A hybrid fault diagnosis method for rolling bearings based on GGRU-1DCNN with AdaBN algorithm under multiple load conditions

断层(地质) 计算机科学 算法 地质学 地震学
作者
Lirong Sun,Xiaomin Zhu,Jiannan Xiao,Wei Cai,Qiaoling Ma,Runtong Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076201-076201 被引量:1
标识
DOI:10.1088/1361-6501/ad3669
摘要

Abstract The fault diagnosis of rolling bearings is a critical aspect of rotating machinery, as it significantly contributes to the overall operational safety of the mechanical equipment. In the practical engineering environment, the complex and variable working conditions, along with the presence of overlapping noise, contribute to intricate frequency information in the acquired signals and their highly time-dependent characteristics, which makes it difficult to extract the available fault features hidden in the signal. Based on this, a hybrid fault diagnosis method named GGRU-1DCNN-AdaBN is introduced, which combines improved gap-gated recurrent unit network (GGRU), one-dimensional convolutional neural network (1DCNN), and adaptive batch normalization (AdaBN). The proposed approach involves several parts to enhance fault diagnosis accuracy in vibration signals under constant load conditions and variable load conditions. Firstly, the end-layer structure of the traditional GRU is replaced with a one-dimensional global average pooling layer to aggregate the influence components of defects and reduce model training parameters. Secondly, the fusion of different types of frequency and sequence features is achieved by combining 1DCNN, addressing the limitation of a single network’s feature extraction capability and the loss of temporal features in a cascaded hybrid model. Subsequently, the fused features are input into a softmax multi-classifier to obtain fault type identification results. Lastly, the GGRU-1DCNN method is further improved by incorporating the AdaBN algorithm, enhancing the model’s domain adaptive capability under variable load conditions and noisy environments. The method is validated using datasets obtained from Case Western Reserve University, aero-engine bearings, Xi’an Jiaotong University, and the Changxing Sumyoung Technology. The findings suggest that the proposed method demonstrates superior accuracy and robustness in fault diagnosis, as well as excellent generalization capability and universal applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
aaoo发布了新的文献求助10
2秒前
撒西不理完成签到,获得积分10
3秒前
Sue kong发布了新的文献求助10
4秒前
Qsss完成签到,获得积分10
5秒前
YangNNNN完成签到,获得积分10
5秒前
aaa发布了新的文献求助10
6秒前
脑洞疼应助义气尔安采纳,获得10
6秒前
无聊的秋刀鱼完成签到,获得积分10
7秒前
tian发布了新的文献求助10
8秒前
9秒前
袁袁完成签到,获得积分10
9秒前
cassie完成签到,获得积分10
10秒前
11秒前
12秒前
bkagyin应助无聊的秋刀鱼采纳,获得10
12秒前
Yu完成签到,获得积分10
12秒前
12秒前
研友_VZG7GZ应助Sue kong采纳,获得10
13秒前
哈哈哈哈完成签到,获得积分10
14秒前
whx关闭了whx文献求助
15秒前
15秒前
16秒前
chunb发布了新的文献求助10
18秒前
熊小子爱学习完成签到,获得积分10
18秒前
陈晨发布了新的文献求助20
18秒前
19秒前
archer发布了新的文献求助10
19秒前
美满的小蘑菇完成签到 ,获得积分10
20秒前
20秒前
22秒前
Archer发布了新的文献求助10
22秒前
Dding应助熊小子爱学习采纳,获得10
22秒前
dingyang41发布了新的文献求助10
22秒前
22秒前
孤独银耳汤完成签到,获得积分10
22秒前
不配.应助筱澍采纳,获得10
23秒前
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236198
求助须知:如何正确求助?哪些是违规求助? 2881908
关于积分的说明 8224330
捐赠科研通 2549909
什么是DOI,文献DOI怎么找? 1378738
科研通“疑难数据库(出版商)”最低求助积分说明 648465
邀请新用户注册赠送积分活动 623955