GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction

计算机科学 化学空间 药物发现 人工智能 机器学习 图形 变压器 人工神经网络 理论计算机科学 生物信息学 工程类 电压 电气工程 生物
作者
Mengmeng Gao,Daokun Zhang,Yi Chen,Yiwen Zhang,Zhikang Wang,Xiaoyu Wang,Shanshan Li,Yuming Guo,Geoffrey I. Webb,Thi Nguyen,Lauren T. May,Jiangning Song
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108339-108339 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.108339
摘要

The application of Artificial Intelligence (AI) to screen drug molecules with potential therapeutic effects has revolutionized the drug discovery process, with significantly lower economic cost and time consumption than the traditional drug discovery pipeline. With the great power of AI, it is possible to rapidly search the vast chemical space for potential drug-target interactions (DTIs) between candidate drug molecules and disease protein targets. However, only a small proportion of molecules have labelled DTIs, consequently limiting the performance of AI-based drug screening. To solve this problem, a machine learning-based approach with great ability to generalize DTI prediction across molecules is desirable. Many existing machine learning approaches for DTI identification failed to exploit the full information with respect to the topological structures of candidate molecules. To develop a better approach for DTI prediction, we propose GraphormerDTI, which employs the powerful Graph Transformer neural network to model molecular structures. GraphormerDTI embeds molecular graphs into vector-format representations through iterative Transformer-based message passing, which encodes molecules' structural characteristics by node centrality encoding, node spatial encoding and edge encoding. With a strong structural inductive bias, the proposed GraphormerDTI approach can effectively infer informative representations for out-of-sample molecules and as such, it is capable of predicting DTIs across molecules with an exceptional performance. GraphormerDTI integrates the Graph Transformer neural network with a 1-dimensional Convolutional Neural Network (1D-CNN) to extract the drugs' and target proteins' representations and leverages an attention mechanism to model the interactions between them. To examine GraphormerDTI's performance for DTI prediction, we conduct experiments on three benchmark datasets, where GraphormerDTI achieves a superior performance than five state-of-the-art baselines for out-of-molecule DTI prediction, including GNN-CPI, GNN-PT, DeepEmbedding-DTI, MolTrans and HyperAttentionDTI, and is on a par with the best baseline for transductive DTI prediction. The source codes and datasets are publicly accessible at https://github.com/mengmeng34/GraphormerDTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
细心妙旋完成签到 ,获得积分10
1秒前
所所应助淡然向松采纳,获得10
2秒前
miemie完成签到,获得积分10
3秒前
木cheng发布了新的文献求助10
3秒前
Distance发布了新的文献求助10
3秒前
月亮发布了新的文献求助10
3秒前
仙女完成签到 ,获得积分10
3秒前
安详的曲奇完成签到,获得积分10
5秒前
5秒前
5秒前
阿航完成签到,获得积分10
5秒前
5秒前
6秒前
猫与咖啡完成签到,获得积分10
6秒前
cldg应助sylnd126采纳,获得10
6秒前
给我打只山鹰吧完成签到,获得积分10
7秒前
葛藟萦藤发布了新的文献求助10
7秒前
zhz完成签到,获得积分10
9秒前
LY完成签到,获得积分20
9秒前
笑点低胡萝卜完成签到,获得积分10
9秒前
无花果应助Le采纳,获得10
9秒前
9秒前
桐桐应助坚定的又莲采纳,获得10
10秒前
牛牛完成签到,获得积分10
10秒前
xxp完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
芭芭拉冲呀完成签到,获得积分10
13秒前
13秒前
在水一方应助李欣荣采纳,获得10
13秒前
lxiaok完成签到,获得积分10
13秒前
14秒前
葛藟萦藤完成签到,获得积分10
14秒前
施小雨完成签到,获得积分10
14秒前
16秒前
red发布了新的文献求助10
17秒前
我是老大应助徐大大采纳,获得10
17秒前
XxxxxxENT发布了新的文献求助10
17秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441097
求助须知:如何正确求助?哪些是违规求助? 3037459
关于积分的说明 8969152
捐赠科研通 2726008
什么是DOI,文献DOI怎么找? 1495147
科研通“疑难数据库(出版商)”最低求助积分说明 691137
邀请新用户注册赠送积分活动 687922