A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

等中心 准直器 质量保证 计算机科学 剂量学 放射治疗计划 头颈部 核医学 模拟 数学 放射治疗 医学 物理 光学 内科学 外部质量评估 外科 病理 成像体模
作者
Joel Carlson,Jong Min Park,So Yeon Park,Jong Min Park,Yun‐Seok Choi,Sung‐Joon Ye
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:61 (6): 2514-2531 被引量:76
标识
DOI:10.1088/0031-9155/61/6/2514
摘要

Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD = 1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be delivered to the patient.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助老肥采纳,获得10
1秒前
濮阳冰海完成签到 ,获得积分10
1秒前
隐形曼青应助Xenia采纳,获得10
1秒前
2秒前
烟花应助英勇代荷采纳,获得10
4秒前
0911wxt发布了新的文献求助30
4秒前
zhuyq完成签到,获得积分10
4秒前
6秒前
hmhu发布了新的文献求助30
6秒前
呼吸小研狗完成签到,获得积分10
6秒前
今后应助贤哥采纳,获得10
6秒前
orixero应助万勇采纳,获得10
7秒前
Xiao完成签到,获得积分10
8秒前
8秒前
liang发布了新的文献求助10
11秒前
allsunday发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
肘汁派发布了新的文献求助10
14秒前
在水一方应助科研通管家采纳,获得10
15秒前
小芳应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
木头人应助科研通管家采纳,获得20
15秒前
15秒前
15秒前
万勇完成签到,获得积分10
16秒前
含糊的白开水完成签到,获得积分10
17秒前
17秒前
19秒前
20秒前
allsunday完成签到,获得积分10
20秒前
肘汁派完成签到,获得积分10
20秒前
20秒前
黑椒墨鱼发布了新的文献求助10
21秒前
Wang完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315957
求助须知:如何正确求助?哪些是违规求助? 2947729
关于积分的说明 8538133
捐赠科研通 2623808
什么是DOI,文献DOI怎么找? 1435496
科研通“疑难数据库(出版商)”最低求助积分说明 665607
邀请新用户注册赠送积分活动 651454