Associations between changes in population mobility in response to the COVID-19 pandemic and socioeconomic factors at the city level in China and country level worldwide: a retrospective, observational study

社会经济地位 人口 人口学 观察研究 大流行 地理 地理流动性 医学 中国 心理干预 环境卫生 社会经济学 2019年冠状病毒病(COVID-19) 疾病 考古 社会学 传染病(医学专业) 病理 精神科
作者
Yonghong Liu,Zengmiao Wang,Benjamin Rader,Bingying Li,Chieh-Hsi Wu,Jason D. Whittington,Pai Zheng,Nils Chr. Stenseth,Ottar N. Bjørnstad,John S. Brownstein,Huaiyu Tian
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:3 (6): e349-e359 被引量:34
标识
DOI:10.1016/s2589-7500(21)00059-5
摘要

BackgroundUntil broad vaccination coverage is reached and effective therapeutics are available, controlling population mobility (ie, changes in the spatial location of a population that affect the spread and distribution of pathogens) is one of the major interventions used to reduce transmission of SARS-CoV-2. However, population mobility differs across locations, which could reduce the effectiveness of pandemic control measures. Here we assess the extent to which socioeconomic factors are associated with reductions in population mobility during the COVID-19 pandemic, at both the city level in China and at the country level worldwide.MethodsIn this retrospective, observational study, we obtained anonymised daily mobile phone location data for 358 Chinese cities from Baidu, and for 121 countries from Google COVID-19 Community Mobility Reports. We assessed the intra-city movement intensity, inflow intensity, and outflow intensity of each Chinese city between Jan 25 (when the national emergency response was implemented) and Feb 18, 2020 (when population mobility was lowest) and compared these data to the corresponding lunar calendar period from the previous year (Feb 5 to March 1, 2019). Chinese cities were classified into four socioeconomic index (SEI) groups (high SEI, high–middle SEI, middle SEI, and low SEI) and the association between socioeconomic factors and changes in population mobility were assessed using univariate and multivariable linear regression. At the country level, we compared six types of mobility (residential, transit stations, workplaces, retail and recreation, parks, and groceries and pharmacies) 35 days after the implementation of the national emergency response in each country and compared these to data from the same day of the week in the baseline period (Jan 3 to Feb 6, 2020). We assessed associations between changes in the six types of mobility and the country's sociodemographic index using univariate and multivariable linear regression.FindingsThe reduction in intra-city movement intensity in China was stronger in cities with a higher SEI than in those with a lower SEI (r=–0·47, p<0·0001). However, reductions in inter-city movement flow (both inflow and outflow intensity) were not associated with SEI and were only associated with government control measures. In the country-level analysis, countries with higher sociodemographic and Universal Health Coverage indexes had greater reductions in population mobility (ie, in transit stations, workplaces, and retail and recreation) following national emergency declarations than those with lower sociodemographic and Universal Health Coverage indexes. A higher sociodemographic index showed a greater reduction in mobility in transit stations (r=–0·27, p=0·0028), workplaces (r=–0·34, p=0·0002), and areas retail and recreation (rxs=–0·30, p=0·0012) than those with a lower sociodemographic index.InterpretationAlthough COVID-19 outbreaks are more frequently reported in larger cities, our analysis shows that future policies should prioritise the reduction of risks in areas with a low socioeconomic level—eg, by providing financial assistance and improving public health messaging. However, our study design only allows us to assess associations, and a long-term study is needed to decipher causality.FundingChinese Ministry of Science and Technology, Research Council of Norway, Beijing Municipal Science & Technology Commission, Beijing Natural Science Foundation, Beijing Advanced Innovation Program for Land Surface Science, National Natural Science Foundation of China, China Association for Science and Technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马大翔完成签到,获得积分10
3秒前
ZzoKk完成签到 ,获得积分10
6秒前
落忆完成签到 ,获得积分10
8秒前
Ll完成签到 ,获得积分10
9秒前
于洋完成签到 ,获得积分10
17秒前
yuchen12a完成签到 ,获得积分10
22秒前
ymxlcfc完成签到 ,获得积分10
26秒前
小狗不是抠脚兵完成签到 ,获得积分10
30秒前
fffffffffffffff完成签到 ,获得积分10
35秒前
fzhou完成签到 ,获得积分10
35秒前
合适的寄灵完成签到 ,获得积分10
38秒前
流觞曲水完成签到 ,获得积分10
58秒前
zijinbeier完成签到 ,获得积分10
1分钟前
汪汪完成签到,获得积分10
1分钟前
wangye完成签到 ,获得积分10
1分钟前
1分钟前
PG完成签到 ,获得积分0
1分钟前
tangzhidi发布了新的文献求助10
1分钟前
何阳完成签到,获得积分10
1分钟前
秋迎夏完成签到,获得积分0
1分钟前
taipingyang完成签到,获得积分10
1分钟前
英俊的铭应助子月之路采纳,获得10
1分钟前
NorthWang完成签到,获得积分10
1分钟前
苏云墨完成签到 ,获得积分10
1分钟前
啊啊啊啊宇呀完成签到 ,获得积分10
1分钟前
舒心平蝶完成签到 ,获得积分10
1分钟前
爱丽丝敏完成签到 ,获得积分10
1分钟前
无情夏寒完成签到 ,获得积分10
1分钟前
迅速千愁完成签到 ,获得积分10
1分钟前
痛失饭搭子完成签到 ,获得积分10
1分钟前
二小完成签到 ,获得积分10
1分钟前
chhzz完成签到 ,获得积分10
1分钟前
合适醉蝶完成签到 ,获得积分10
1分钟前
1分钟前
桂花完成签到 ,获得积分10
1分钟前
glanceofwind完成签到 ,获得积分10
1分钟前
weng完成签到,获得积分10
1分钟前
lyk完成签到 ,获得积分10
1分钟前
Lesterem完成签到 ,获得积分10
1分钟前
如意歌曲发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126186
求助须知:如何正确求助?哪些是违规求助? 2776364
关于积分的说明 7729927
捐赠科研通 2431820
什么是DOI,文献DOI怎么找? 1292299
科研通“疑难数据库(出版商)”最低求助积分说明 622696
版权声明 600430