Associations between changes in population mobility in response to the COVID-19 pandemic and socioeconomic factors at the city level in China and country level worldwide: a retrospective, observational study

社会经济地位 人口 人口学 观察研究 大流行 地理 地理流动性 医学 中国 心理干预 环境卫生 社会经济学 2019年冠状病毒病(COVID-19) 疾病 考古 社会学 传染病(医学专业) 病理 精神科
作者
Yonghong Liu,Zengmiao Wang,Benjamin Rader,Bingying Li,Chieh-Hsi Wu,Jason D. Whittington,Pai Zheng,Nils Chr. Stenseth,Ottar N. Bjørnstad,John S. Brownstein,Huaiyu Tian
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:3 (6): e349-e359 被引量:34
标识
DOI:10.1016/s2589-7500(21)00059-5
摘要

BackgroundUntil broad vaccination coverage is reached and effective therapeutics are available, controlling population mobility (ie, changes in the spatial location of a population that affect the spread and distribution of pathogens) is one of the major interventions used to reduce transmission of SARS-CoV-2. However, population mobility differs across locations, which could reduce the effectiveness of pandemic control measures. Here we assess the extent to which socioeconomic factors are associated with reductions in population mobility during the COVID-19 pandemic, at both the city level in China and at the country level worldwide.MethodsIn this retrospective, observational study, we obtained anonymised daily mobile phone location data for 358 Chinese cities from Baidu, and for 121 countries from Google COVID-19 Community Mobility Reports. We assessed the intra-city movement intensity, inflow intensity, and outflow intensity of each Chinese city between Jan 25 (when the national emergency response was implemented) and Feb 18, 2020 (when population mobility was lowest) and compared these data to the corresponding lunar calendar period from the previous year (Feb 5 to March 1, 2019). Chinese cities were classified into four socioeconomic index (SEI) groups (high SEI, high–middle SEI, middle SEI, and low SEI) and the association between socioeconomic factors and changes in population mobility were assessed using univariate and multivariable linear regression. At the country level, we compared six types of mobility (residential, transit stations, workplaces, retail and recreation, parks, and groceries and pharmacies) 35 days after the implementation of the national emergency response in each country and compared these to data from the same day of the week in the baseline period (Jan 3 to Feb 6, 2020). We assessed associations between changes in the six types of mobility and the country's sociodemographic index using univariate and multivariable linear regression.FindingsThe reduction in intra-city movement intensity in China was stronger in cities with a higher SEI than in those with a lower SEI (r=–0·47, p<0·0001). However, reductions in inter-city movement flow (both inflow and outflow intensity) were not associated with SEI and were only associated with government control measures. In the country-level analysis, countries with higher sociodemographic and Universal Health Coverage indexes had greater reductions in population mobility (ie, in transit stations, workplaces, and retail and recreation) following national emergency declarations than those with lower sociodemographic and Universal Health Coverage indexes. A higher sociodemographic index showed a greater reduction in mobility in transit stations (r=–0·27, p=0·0028), workplaces (r=–0·34, p=0·0002), and areas retail and recreation (rxs=–0·30, p=0·0012) than those with a lower sociodemographic index.InterpretationAlthough COVID-19 outbreaks are more frequently reported in larger cities, our analysis shows that future policies should prioritise the reduction of risks in areas with a low socioeconomic level—eg, by providing financial assistance and improving public health messaging. However, our study design only allows us to assess associations, and a long-term study is needed to decipher causality.FundingChinese Ministry of Science and Technology, Research Council of Norway, Beijing Municipal Science & Technology Commission, Beijing Natural Science Foundation, Beijing Advanced Innovation Program for Land Surface Science, National Natural Science Foundation of China, China Association for Science and Technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zxm发布了新的文献求助10
1秒前
Pooh发布了新的文献求助10
1秒前
1秒前
小xy完成签到,获得积分10
2秒前
2秒前
Lucas应助666采纳,获得10
2秒前
Moriarty完成签到,获得积分10
2秒前
kingwill应助肯瑞恩哭哭采纳,获得20
3秒前
Ivy完成签到,获得积分10
3秒前
科研通AI6应助Dream采纳,获得10
4秒前
莉莉完成签到,获得积分10
4秒前
今后应助大神装采纳,获得10
4秒前
揽星完成签到,获得积分10
4秒前
4秒前
清脆如娆完成签到 ,获得积分10
4秒前
zzzzz完成签到,获得积分10
5秒前
meddy完成签到,获得积分10
5秒前
5秒前
zy完成签到,获得积分10
6秒前
lllu发布了新的文献求助10
6秒前
迷失的杰克完成签到 ,获得积分10
7秒前
喻初原发布了新的文献求助10
7秒前
南宫映榕完成签到,获得积分10
7秒前
赘婿应助yk采纳,获得10
7秒前
Winfred发布了新的文献求助10
8秒前
微笑芒果完成签到 ,获得积分0
8秒前
默默的过客完成签到,获得积分10
8秒前
cc413完成签到,获得积分20
8秒前
8秒前
吕君完成签到,获得积分10
9秒前
外向的如冰完成签到,获得积分10
10秒前
梦C2发布了新的文献求助10
10秒前
spirit发布了新的文献求助10
10秒前
科研通AI2S应助霸气的念云采纳,获得10
11秒前
长情的若山完成签到,获得积分10
11秒前
小红完成签到 ,获得积分10
11秒前
LXX不钻牛角尖完成签到,获得积分10
11秒前
圆滚滚的栗子君完成签到 ,获得积分10
12秒前
livinglast完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326463
求助须知:如何正确求助?哪些是违规求助? 4466690
关于积分的说明 13897795
捐赠科研通 4359057
什么是DOI,文献DOI怎么找? 2394428
邀请新用户注册赠送积分活动 1387937
关于科研通互助平台的介绍 1358802