Associations between changes in population mobility in response to the COVID-19 pandemic and socioeconomic factors at the city level in China and country level worldwide: a retrospective, observational study

社会经济地位 人口 人口学 观察研究 大流行 地理 地理流动性 医学 中国 心理干预 环境卫生 社会经济学 2019年冠状病毒病(COVID-19) 疾病 考古 社会学 传染病(医学专业) 病理 精神科
作者
Yonghong Liu,Zengmiao Wang,Benjamin Rader,Bingying Li,Chieh-Hsi Wu,Jason D. Whittington,Pai Zheng,Nils Chr. Stenseth,Ottar N. Bjørnstad,John S. Brownstein,Huaiyu Tian
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:3 (6): e349-e359 被引量:34
标识
DOI:10.1016/s2589-7500(21)00059-5
摘要

BackgroundUntil broad vaccination coverage is reached and effective therapeutics are available, controlling population mobility (ie, changes in the spatial location of a population that affect the spread and distribution of pathogens) is one of the major interventions used to reduce transmission of SARS-CoV-2. However, population mobility differs across locations, which could reduce the effectiveness of pandemic control measures. Here we assess the extent to which socioeconomic factors are associated with reductions in population mobility during the COVID-19 pandemic, at both the city level in China and at the country level worldwide.MethodsIn this retrospective, observational study, we obtained anonymised daily mobile phone location data for 358 Chinese cities from Baidu, and for 121 countries from Google COVID-19 Community Mobility Reports. We assessed the intra-city movement intensity, inflow intensity, and outflow intensity of each Chinese city between Jan 25 (when the national emergency response was implemented) and Feb 18, 2020 (when population mobility was lowest) and compared these data to the corresponding lunar calendar period from the previous year (Feb 5 to March 1, 2019). Chinese cities were classified into four socioeconomic index (SEI) groups (high SEI, high–middle SEI, middle SEI, and low SEI) and the association between socioeconomic factors and changes in population mobility were assessed using univariate and multivariable linear regression. At the country level, we compared six types of mobility (residential, transit stations, workplaces, retail and recreation, parks, and groceries and pharmacies) 35 days after the implementation of the national emergency response in each country and compared these to data from the same day of the week in the baseline period (Jan 3 to Feb 6, 2020). We assessed associations between changes in the six types of mobility and the country's sociodemographic index using univariate and multivariable linear regression.FindingsThe reduction in intra-city movement intensity in China was stronger in cities with a higher SEI than in those with a lower SEI (r=–0·47, p<0·0001). However, reductions in inter-city movement flow (both inflow and outflow intensity) were not associated with SEI and were only associated with government control measures. In the country-level analysis, countries with higher sociodemographic and Universal Health Coverage indexes had greater reductions in population mobility (ie, in transit stations, workplaces, and retail and recreation) following national emergency declarations than those with lower sociodemographic and Universal Health Coverage indexes. A higher sociodemographic index showed a greater reduction in mobility in transit stations (r=–0·27, p=0·0028), workplaces (r=–0·34, p=0·0002), and areas retail and recreation (rxs=–0·30, p=0·0012) than those with a lower sociodemographic index.InterpretationAlthough COVID-19 outbreaks are more frequently reported in larger cities, our analysis shows that future policies should prioritise the reduction of risks in areas with a low socioeconomic level—eg, by providing financial assistance and improving public health messaging. However, our study design only allows us to assess associations, and a long-term study is needed to decipher causality.FundingChinese Ministry of Science and Technology, Research Council of Norway, Beijing Municipal Science & Technology Commission, Beijing Natural Science Foundation, Beijing Advanced Innovation Program for Land Surface Science, National Natural Science Foundation of China, China Association for Science and Technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助大橙子采纳,获得10
1秒前
1秒前
SYLH应助Echo_1995采纳,获得10
3秒前
吕小布完成签到,获得积分10
4秒前
骑驴追火箭完成签到,获得积分10
6秒前
baomingqiu完成签到 ,获得积分10
6秒前
乐观寻雪完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
复杂勒完成签到,获得积分10
9秒前
10秒前
bird完成签到,获得积分10
11秒前
AaronDP发布了新的文献求助50
12秒前
terryok完成签到,获得积分10
13秒前
Cll完成签到 ,获得积分10
13秒前
聪明的宛菡完成签到,获得积分10
14秒前
CNYDNZB完成签到 ,获得积分10
14秒前
xxj完成签到 ,获得积分10
14秒前
芊芊完成签到 ,获得积分10
15秒前
yar应助bluesky采纳,获得10
15秒前
海人完成签到 ,获得积分10
16秒前
SY15732023811完成签到 ,获得积分10
18秒前
李建勋完成签到,获得积分10
18秒前
科研通AI2S应助一路芬芳采纳,获得10
18秒前
黄花完成签到 ,获得积分10
19秒前
刘珍荣完成签到,获得积分10
20秒前
20秒前
紫金之巅完成签到 ,获得积分10
20秒前
Gang完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
CYYDNDB完成签到 ,获得积分10
23秒前
粿粿一定行完成签到 ,获得积分10
24秒前
25秒前
战战完成签到,获得积分10
26秒前
xlk2222完成签到,获得积分10
29秒前
笨笨以莲完成签到,获得积分10
29秒前
YHX完成签到,获得积分10
30秒前
沐沐心完成签到 ,获得积分10
31秒前
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022