Displacement prediction in colluvial landslides, Three Gorges Reservoir, China

地质学 流离失所(心理学) 岩土工程 三峡 滑坡分类
作者
Juan Du,Kunlong Yin,Suzanne Lacasse
出处
期刊:Landslides [Springer Nature]
卷期号:10 (2): 203-218 被引量:177
标识
DOI:10.1007/s10346-012-0326-8
摘要

The prediction of active landslide displacement is a critical component of an early warning system and helps prevent property damage and loss of human lives. For the colluvial landslides in the Three Gorges Reservoir, the monitored displacement, precipitation, and reservoir level indicated that the characteristics of the deformations were closely related to the seasonal fluctuation of rainfall and reservoir level and that the displacement curve versus time showed a stepwise pattern. Besides the geological conditions, landslide displacement also depended on the variation in the influencing factors. Two typical colluvial landslides, the Baishuihe landslide and the Bazimen landslide, were selected for case studies. To analyze the different response components of the total displacement, the accumulated displacement was divided into a trend and a periodic component using a time series model. For the prediction of the periodic displacement, a back-propagation neural network model was adopted with selected factors including (1) the accumulated precipitation during the last 1-month period, (2) the accumulated precipitation over a 2-month period, (3) change of reservoir level during the last 1 month, (4) the average elevation of the reservoir level in the current month, and (5) the accumulated displacement increment during 1 year. The prediction of the displacement showed a periodic response in the displacement as a function of the variation of the influencing factors. The prediction model provided a good representation of the measured slide displacement behavior at the Baishuihe and the Bazimen sites, which can be adopted for displacement prediction and early warning of colluvial landslides in the Three Gorges Reservoir.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘绿茶发布了新的文献求助10
1秒前
3秒前
4秒前
魏煜佳发布了新的文献求助10
4秒前
shiqiang mu发布了新的文献求助10
5秒前
可可可可汁完成签到 ,获得积分10
5秒前
Yyy发布了新的文献求助10
7秒前
汉堡包应助研友_8Wz5MZ采纳,获得10
8秒前
欢喜大地发布了新的文献求助10
8秒前
10秒前
耶耶发布了新的文献求助10
12秒前
14秒前
研友_VZG7GZ应助言叶采纳,获得10
15秒前
psq0061应助欢喜大地采纳,获得10
16秒前
科研强发布了新的文献求助10
16秒前
wanci应助我火龙果呢采纳,获得20
17秒前
范嘉发布了新的文献求助30
18秒前
tend完成签到,获得积分10
19秒前
22秒前
22秒前
烟花应助科研强采纳,获得10
25秒前
无限子轩发布了新的文献求助10
25秒前
言叶发布了新的文献求助10
27秒前
栗子完成签到,获得积分10
28秒前
科研通AI2S应助周林采纳,获得10
28秒前
Orange应助Miracle采纳,获得10
28秒前
在水一方应助xiaoli采纳,获得10
29秒前
Trevino应助tend采纳,获得10
29秒前
哈哈哈哈哈完成签到,获得积分10
34秒前
雨肖完成签到,获得积分10
35秒前
Silole完成签到,获得积分10
35秒前
KH完成签到,获得积分10
39秒前
大个应助张朝程采纳,获得10
39秒前
EBsisyphs发布了新的文献求助10
39秒前
40秒前
41秒前
英姑应助大气的谷梦采纳,获得10
43秒前
44秒前
44秒前
FashionBoy应助无限子轩采纳,获得10
45秒前
高分求助中
Востребованный временем 2500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391673
求助须知:如何正确求助?哪些是违规求助? 3002679
关于积分的说明 8805255
捐赠科研通 2689361
什么是DOI,文献DOI怎么找? 1473071
科研通“疑难数据库(出版商)”最低求助积分说明 681350
邀请新用户注册赠送积分活动 674200