Maximizing FCEV Stack Cooling Performance: Developing a Performance Prediction Model Based on Machine Learning for Evaporative Cooling Radiator

散热器(发动机冷却) 蒸发冷却器 堆栈(抽象数据类型) 水冷 冷却液 计算机科学 机械工程 模拟 工程类 汽车工程 程序设计语言
作者
Dongkeon Lee,Dong Seok Kim,Hyung Suk Byun,Hyun Sung Kang,Yoon Hyuk Shin,Hoseong Lee
出处
期刊:SAE technical paper series 被引量:4
标识
DOI:10.4271/2024-01-2586
摘要

<div class="section abstract"><div class="htmlview paragraph">Recently, regulations on automobile emission have been significantly strengthened to address climate change. The automobile industry is responding to these regulations by developing electric vehicles that use batteries and fuel-cells. Automobile emissions are environmentally harmful, especially in the case of vehicles equipped with high-temperature and high-pressure diesel engines using compression-ignition, the proportion of nitrogen oxides (NO<sub>x</sub>) emissions reaches as high as 85%. Additionally, air pollution caused by particulate matter (PM) is six to ten times higher compared to gasoline engines. Therefore, the electrification of commercial vehicles using diesel engines could potentially yield even greater environmental benefits. For commercial vehicles battery electric vehicles (BEVs) require a large number of batteries to secure a long driving range, which reduces their maximum payload capacity. However, fuel-cell electric vehicles (FCEVs) use hydrogen as a fuel to generate electricity, allowing them to achieve a long driving range with relatively fewer batteries. Therefore, FCEVs are more suitable for heavy-duty trucks. However, FCEVs require a significant increase in the number of cooling components to ensure the performance of key parts, including fuel-cell. As a result, the development of a new cooling system is essential in FCEVs to achieve high cooling performance within the constraints of the vehicle package. In this study, we addressed the insufficient fuel-cell cooling performance by harnessing the evaporative cooling effect of exhaust water, a byproduct of fuel-cell power generation, which is injected into the stack cooling radiator using the nozzles. Through test on the ‘Hyundai XCIENT Fuel-Cell’ and conducting 108 times of system evaluations, we confirmed that injecting water into the stack cooling radiator resulted in an additional cooling performance of 4~5°C due to evaporation. We also analyzed the key factors for improving cooling performance through data analysis. Furthermore, we implemented a predictive model, using machine learning techniques such as Python’s PyCaret, to optimize and maximize cooling performance based on ‘cooling perfomance improvement’ and ‘evaporation contrifbution’ when applying the evaporative cooling effect in acutal vehicles.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助燕子采纳,获得10
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
科研垃圾完成签到,获得积分10
2秒前
freebra发布了新的文献求助30
2秒前
cdercder应助rachel03采纳,获得20
3秒前
科研通AI2S应助喜悦的半芹采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助xiaojinzi采纳,获得10
3秒前
乐乐应助大地采纳,获得10
3秒前
gzy780819发布了新的文献求助10
5秒前
5秒前
花花完成签到,获得积分10
5秒前
5秒前
Wilson完成签到 ,获得积分10
6秒前
zengqin发布了新的文献求助10
6秒前
刘阳完成签到,获得积分10
7秒前
7秒前
子俞发布了新的文献求助10
7秒前
荔枝啵啵发布了新的文献求助30
8秒前
8秒前
YYY完成签到 ,获得积分10
8秒前
完美世界应助hsf采纳,获得10
8秒前
9秒前
9秒前
阿北完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
坚强亦丝应助执着的松鼠采纳,获得10
10秒前
HZY发布了新的文献求助30
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
DQ完成签到,获得积分10
12秒前
九日'完成签到,获得积分10
12秒前
含糊的寇发布了新的文献求助10
12秒前
13秒前
一一发布了新的文献求助10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667361
求助须知:如何正确求助?哪些是违规求助? 3226016
关于积分的说明 9767186
捐赠科研通 2935921
什么是DOI,文献DOI怎么找? 1608048
邀请新用户注册赠送积分活动 759479
科研通“疑难数据库(出版商)”最低求助积分说明 735404