Deciphering the Therapeutic Role of Lactate in Combating Disuse-Induced Muscle Atrophy: An NMR-Based Metabolomic Study in Mice

肌肉萎缩 腓肠肌 苯丙氨酸 新陈代谢 肌球蛋白 化学 生物化学 代谢组学 内科学 精氨酸 乳酸 内分泌学 骨骼肌 氨基酸 生物 医学 遗传学 色谱法 细菌
作者
Yu Zhou,Xi Liu,Zhen Qi,Longhe Yang,Caihua Huang,Donghai Lin
出处
期刊:Molecules [MDPI AG]
卷期号:29 (10): 2216-2216
标识
DOI:10.3390/molecules29102216
摘要

Disuse muscle atrophy (DMA) is a significant healthcare challenge characterized by progressive loss of muscle mass and function resulting from prolonged inactivity. The development of effective strategies for muscle recovery is essential. In this study, we established a DMA mouse model through hindlimb suspension to evaluate the therapeutic potential of lactate in alleviating the detrimental effects on the gastrocnemius muscle. Using NMR-based metabolomic analysis, we investigated the metabolic changes in DMA-injured gastrocnemius muscles compared to controls and evaluated the beneficial effects of lactate treatment. Our results show that lactate significantly reduced muscle mass loss and improved muscle function by downregulating Murf1 expression, decreasing protein ubiquitination and hydrolysis, and increasing myosin heavy chain levels. Crucially, lactate corrected perturbations in four key metabolic pathways in the DMA gastrocnemius: the biosynthesis of phenylalanine, tyrosine, and tryptophan; phenylalanine metabolism; histidine metabolism; and arginine and proline metabolism. In addition to phenylalanine-related pathways, lactate also plays a role in regulating branched-chain amino acid metabolism and energy metabolism. Notably, lactate treatment normalized the levels of eight essential metabolites in DMA mice, underscoring its potential as a therapeutic agent against the consequences of prolonged inactivity and muscle wasting. This study not only advances our understanding of the therapeutic benefits of lactate but also provides a foundation for novel treatment approaches aimed at metabolic restoration and muscle recovery in conditions of muscle wasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xfyxxh完成签到,获得积分10
1秒前
萌新发布了新的文献求助10
1秒前
3秒前
lynn完成签到,获得积分10
3秒前
4秒前
Lucas应助vaco采纳,获得10
4秒前
tjb关闭了tjb文献求助
4秒前
6秒前
ruanyh发布了新的文献求助10
8秒前
kitty完成签到,获得积分20
8秒前
张占完成签到,获得积分10
8秒前
10秒前
10秒前
CipherSage应助我爱科研采纳,获得10
10秒前
liu1223456发布了新的文献求助10
11秒前
ju完成签到,获得积分10
11秒前
11秒前
共享精神应助阳光的梦寒采纳,获得10
11秒前
渔婆完成签到,获得积分10
12秒前
蓝精灵关注了科研通微信公众号
13秒前
负责纲完成签到 ,获得积分10
13秒前
糖糖爱干饭完成签到 ,获得积分10
13秒前
月亮完成签到,获得积分10
13秒前
Lucas应助mylaodao采纳,获得20
14秒前
熙冉完成签到,获得积分10
14秒前
nsk810431231发布了新的文献求助10
14秒前
桐桐应助fool采纳,获得10
14秒前
钟是一梦发布了新的文献求助10
14秒前
萌新完成签到,获得积分10
15秒前
mmm0709完成签到,获得积分10
15秒前
周星星完成签到,获得积分10
15秒前
好大的雨完成签到,获得积分10
15秒前
冷冷发布了新的文献求助10
16秒前
CL发布了新的文献求助20
17秒前
陈兮兮发布了新的文献求助20
18秒前
研友_VZG7GZ应助威威采纳,获得10
18秒前
18秒前
笨笨完成签到,获得积分10
19秒前
Akim应助周星星采纳,获得10
19秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081823
求助须知:如何正确求助?哪些是违规求助? 2734862
关于积分的说明 7534680
捐赠科研通 2384387
什么是DOI,文献DOI怎么找? 1264312
科研通“疑难数据库(出版商)”最低求助积分说明 612614
版权声明 597600