Comparison of deep reinforcement learning-based energy management strategies for fuel cell vehicles considering economics, durability and adaptability

适应性 耐久性 强化学习 燃料电池 工程类 钢筋 计算机科学 经济 人工智能 结构工程 化学工程 管理 数据库
作者
Siyu Wang,Duo Yang,Feng-Shan Yan,Kunjie Yu
出处
期刊:Energy [Elsevier]
卷期号:307: 132771-132771
标识
DOI:10.1016/j.energy.2024.132771
摘要

The energy management strategy (EMS) is the top priority to ensure the safe and efficient operation of fuel cell hybrid vehicles. Nowadays, EMSs based on deep reinforcement learning (DRL) have become a research hotspot. However, most DRL-based EMSs have not discussed the impact of algorithm hyperparameters, and have not provided a comprehensive evaluation of indicators including fuel cost, aging, and efficiency. There is a lack of a unified performance metrics for different DRL algorithms. To solve this, a comparative study of EMSs based on five DRL methods is conducted in this paper, and a multi-objective reward function that integrates hydrogen consumption, fuel cell degradation, and battery state-of-charge fluctuation is designed. First, the hyperparameters and weight coefficients of the reward function are determined based on the algorithm convergence performance in the training process and average hydrogen consumption, respectively. Then the comprehensive performance of the above-mentioned DRL-based EMSs are compared horizontally. Finally, six driving conditions are used as test sets to explore the adaptability. The results show that the TD3-based EMS has the smallest equivalent hydrogen consumption and degradation per 100 km, which are 1165 g and 0.0651% respectively. This work can provide valid guidance for researchers to use DRL in EMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
派大星完成签到,获得积分10
1秒前
1秒前
1秒前
愉快的楷瑞完成签到,获得积分10
2秒前
汛钥完成签到,获得积分10
3秒前
3秒前
kk完成签到,获得积分10
4秒前
炙热晓露发布了新的文献求助10
5秒前
SCI_Dark工人完成签到 ,获得积分10
5秒前
6秒前
懵懂的南风完成签到,获得积分10
7秒前
8秒前
8秒前
Ghostghost完成签到,获得积分10
8秒前
8秒前
sc给sc的求助进行了留言
9秒前
轩辕德地发布了新的文献求助10
9秒前
2514完成签到,获得积分20
9秒前
enndyou完成签到,获得积分10
9秒前
ariaooo完成签到,获得积分10
10秒前
10秒前
11秒前
一路向阳完成签到,获得积分10
12秒前
加菲丰丰应助鱼鱼鱼采纳,获得20
12秒前
打打应助扎心采纳,获得10
12秒前
斯文可仁发布了新的文献求助10
12秒前
吉吉国王完成签到 ,获得积分10
12秒前
CipherSage应助忆茶戏采纳,获得10
13秒前
13秒前
123发布了新的文献求助30
13秒前
13秒前
yingying完成签到 ,获得积分10
13秒前
桔梗发布了新的文献求助10
13秒前
14秒前
独立江湖女完成签到 ,获得积分10
14秒前
五十发布了新的文献求助10
14秒前
14秒前
Zing发布了新的文献求助10
14秒前
铎铎铎完成签到 ,获得积分10
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143215
求助须知:如何正确求助?哪些是违规求助? 2794316
关于积分的说明 7810682
捐赠科研通 2450507
什么是DOI,文献DOI怎么找? 1303891
科研通“疑难数据库(出版商)”最低求助积分说明 627126
版权声明 601386