Assessing Objective Indicators of Users' Cognitive Load During Proactive In-Car Dialogs

主动性 计算机科学 集合(抽象数据类型) 人机交互 向导 感知 认知 万维网 心理学 神经科学 社会心理学 程序设计语言
作者
Maria Christina Secher Schmidt,David Helbig,Ojashree Bhandare,Daniela Stier,Wolfgang Minker,Steffen Werner
标识
DOI:10.1145/3314183.3324985
摘要

Using Personal Assistants (PAs) via voice becomes increasingly usual as more and more devices in different environments offer this capability, such as Google Assistant, Amazon Alexa, Apple Siri, Microsoft Cortana, Mercedes-Benz MBUX or BMW Intelligent Personal Assistant. PAs help users to set reminders, find their way through traffic, or send messages to friends and colleagues. While serving the users' needs, PAs constantly collect personal data in order to personalize their services and adapt their behavior. In order to find out which objective Cognitive Load (CL) indicators reflect the users' perception of proactive system behavior in six specific use cases of an in-car PA, we conducted a Wizard of Oz study in a driving simulator with 42 participants. We varied traffic density and tracked physiological data, such as heart rate (HR) and electrodermal activity (EDA). We assessed the users' CL during the interaction with the PA by employing these data as well as real-time driving data (RTDA) via the Controller Area Network (CAN bus). The results show that physiological data like HR and EDA are not suitable to be used as indicators for the users' CL in this experiment. This is because the tracked physiological data do not show significant differences with respect to different traffic densities or proactivity. At the same time it has to be discussed whether the used type of recording physiological data is robust enough for our purposes. Concerning driving data, only the acceleration parameter showed a tendency towards differences between age groups, though insignificantly. The same is valid for the steering angle parameter when comparing male and female users. For future work, we plan to additionally evaluate subjective CL measures and other ratings to see whether these show more significant differences between the (non-)proactive assistants, traffic densities, or use cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助自由秋荷采纳,获得10
刚刚
赘婿应助儒雅的忆翠采纳,获得10
1秒前
Shinchan完成签到,获得积分10
1秒前
wanci应助万浩采纳,获得10
1秒前
NIUBEN发布了新的文献求助10
1秒前
nuonuo发布了新的文献求助10
2秒前
风中忆枫发布了新的文献求助10
2秒前
3秒前
Bepa发布了新的文献求助10
3秒前
是个聪明蛋完成签到,获得积分10
3秒前
情怀应助加纳加纳乔采纳,获得10
3秒前
郑光英发布了新的文献求助10
3秒前
leaf完成签到 ,获得积分10
3秒前
可爱的函函应助LDDD采纳,获得10
4秒前
老迟到的醉卉完成签到,获得积分10
4秒前
leaolf应助小丸子采纳,获得10
4秒前
愉快的夏青完成签到,获得积分10
5秒前
碳水大王完成签到,获得积分10
5秒前
温水完成签到,获得积分10
5秒前
三伏天发布了新的文献求助10
6秒前
Dr Niu应助顺利梦菡采纳,获得10
6秒前
8秒前
尊敬忆秋应助guozizi采纳,获得10
8秒前
9秒前
云魂完成签到,获得积分10
9秒前
马阡榕完成签到 ,获得积分10
9秒前
10秒前
半夜炒茄子完成签到,获得积分10
10秒前
李健应助wqmx2008采纳,获得10
10秒前
思源应助牧万万采纳,获得10
11秒前
11秒前
赘婿应助孤独的钢铁侠采纳,获得10
12秒前
李健的小迷弟应助LDDD采纳,获得10
12秒前
12秒前
科研通AI6应助喜悦的唇彩采纳,获得10
12秒前
13秒前
13秒前
13秒前
旺帮主完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355