Assessing Objective Indicators of Users' Cognitive Load During Proactive In-Car Dialogs

主动性 计算机科学 集合(抽象数据类型) 人机交互 向导 感知 认知 万维网 心理学 社会心理学 神经科学 程序设计语言
作者
Maria Christina Secher Schmidt,David Helbig,Ojashree Bhandare,Daniela Stier,Wolfgang Minker,Steffen Werner
标识
DOI:10.1145/3314183.3324985
摘要

Using Personal Assistants (PAs) via voice becomes increasingly usual as more and more devices in different environments offer this capability, such as Google Assistant, Amazon Alexa, Apple Siri, Microsoft Cortana, Mercedes-Benz MBUX or BMW Intelligent Personal Assistant. PAs help users to set reminders, find their way through traffic, or send messages to friends and colleagues. While serving the users' needs, PAs constantly collect personal data in order to personalize their services and adapt their behavior. In order to find out which objective Cognitive Load (CL) indicators reflect the users' perception of proactive system behavior in six specific use cases of an in-car PA, we conducted a Wizard of Oz study in a driving simulator with 42 participants. We varied traffic density and tracked physiological data, such as heart rate (HR) and electrodermal activity (EDA). We assessed the users' CL during the interaction with the PA by employing these data as well as real-time driving data (RTDA) via the Controller Area Network (CAN bus). The results show that physiological data like HR and EDA are not suitable to be used as indicators for the users' CL in this experiment. This is because the tracked physiological data do not show significant differences with respect to different traffic densities or proactivity. At the same time it has to be discussed whether the used type of recording physiological data is robust enough for our purposes. Concerning driving data, only the acceleration parameter showed a tendency towards differences between age groups, though insignificantly. The same is valid for the steering angle parameter when comparing male and female users. For future work, we plan to additionally evaluate subjective CL measures and other ratings to see whether these show more significant differences between the (non-)proactive assistants, traffic densities, or use cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
1秒前
在水一方应助专一的荧采纳,获得10
1秒前
Ava应助半人采纳,获得10
3秒前
3秒前
4秒前
Xxxxzzz发布了新的文献求助10
5秒前
JamesPei应助务实幼蓉采纳,获得10
7秒前
Akim应助露似珍珠月似弓采纳,获得10
7秒前
流光完成签到 ,获得积分10
9秒前
李健应助木子采纳,获得10
10秒前
明天太远发布了新的文献求助100
11秒前
12秒前
Sky关闭了Sky文献求助
12秒前
星陨完成签到 ,获得积分10
13秒前
kk发布了新的文献求助10
15秒前
皮尔特桃仔完成签到 ,获得积分10
16秒前
复杂雁桃完成签到,获得积分20
16秒前
16秒前
高丽娜完成签到,获得积分20
18秒前
20秒前
复杂雁桃发布了新的文献求助30
20秒前
Hello应助kk采纳,获得10
23秒前
刘晚柠完成签到 ,获得积分10
24秒前
louziqi发布了新的文献求助10
25秒前
皮尔特桃仔关注了科研通微信公众号
26秒前
黑木完成签到 ,获得积分10
27秒前
FashionBoy应助dd采纳,获得50
27秒前
29秒前
风趣乌冬面完成签到,获得积分10
32秒前
脑洞疼应助科研通管家采纳,获得10
34秒前
搜集达人应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
领导范儿应助科研通管家采纳,获得10
34秒前
扶苏在上发布了新的文献求助30
34秒前
master应助科研通管家采纳,获得10
34秒前
Lucas应助科研通管家采纳,获得10
34秒前
NexusExplorer应助科研通管家采纳,获得10
34秒前
34秒前
汉堡包应助科研通管家采纳,获得10
34秒前
35秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157329
求助须知:如何正确求助?哪些是违规求助? 2808824
关于积分的说明 7878475
捐赠科研通 2467158
什么是DOI,文献DOI怎么找? 1313222
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919