生物
乙酰化
泛素
血管生成
癌症研究
脱甲基酶
甲基化
HIF1A型
串扰
细胞生物学
羟基化
组蛋白
缺氧诱导因子
生物化学
酶
基因
光学
物理
作者
J. Y. Lee,J. H. Park,Hyung Jong Choi,Hee‐Young Won,Hyeong-Seok Joo,Dong-Hyun Shin,M K Park,Bitnara Han,Kwang Pyo Kim,T J Lee,Carlo M. Croce,Gu Kong
出处
期刊:Oncogene
[Springer Nature]
日期:2017-05-22
卷期号:36 (39): 5512-5521
被引量:91
摘要
Lysine-specific demethylase 1 (LSD1), which has been considered as a potential therapeutic target in human cancer, has been known to regulate many biological functions through its non-histone substrates. Although LSD1-induced hypoxia-inducible factor alpha (HIF1α) demethylation has recently been proposed, the effect of LSD1 on the relationship between HIF1α post-translational modifications (PTMs) and HIF1α-induced tumor angiogenesis remains to be elucidated. Here, we identify a new methylation site of the HIF1α protein antagonized by LSD1 and the interplay between HIF1α protein methylation and other PTMs in regulating tumor angiogenesis. LSD1 demethylates HIF1α at lysine (K) 391, which protects HIF1α against ubiquitin-mediated protein degradation. LSD1 also directly suppresses PHD2-induced HIF1α hydroxylation, which has a mutually dependent interplay with Set9-mediated HIF1α methylation. Moreover, the HIF1α acetylation that occurs in a HIF1α methylation-dependent manner is inhibited by the LSD1/NuRD complex. HIF1α stabilized by LSD1 cooperates with CBP and MTA1 to enhance vascular endothelial growth factor (VEGF)-induced tumor angiogenesis. Thus, LSD1 is a key regulator of HIF1α/VEGF-mediated tumor angiogenesis by antagonizing the crosstalk between PTMs involving HIF1α protein degradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI