光催化
化学
金属有机骨架
试剂
组合化学
活动站点
光化学
产量(工程)
纳米技术
催化作用
有机化学
材料科学
吸附
冶金
作者
Gui-Qi Lai,Zhixin Jiang,Hao Zhong,Lai‐Hon Chung,Ning Li,Jun He
出处
期刊:Chinese Journal of Structural Chemistry
日期:2023-04-23
卷期号:42 (6): 100090-100090
被引量:9
标识
DOI:10.1016/j.cjsc.2023.100090
摘要
Photocatalytic hydrogen evolution reaction (HER) represents one of the most promising technologies for sustainable development. Even though metal-organic framework (MOF), comprising rich topologies and tunable functionalities, is getting attention as a new generation of photocatalyst, a majority of them only provide unclear active sites along with the use of external noble-metal based photosensitizers and environmentally unfriendly scavengers. Therefore, it is urged to develop MOFs possessing structurally unambiguous active sites along with inherent photosensitizing units and execute photocatalytic HER with greener sacrificial reagents. Herein, we report a UiO-66-type framework, namely UiO-66-dcbdt-Cd (dcbdt2− = 1,4-dicarboxylatebenzene-2,3-dithiol), bearing Cd-thiocatecholato moieties as intrinsic photosensitizing units and structurally well-defined active sites for photocatalytic HER in H2O. UiO-66-dcbdt-Cd gave the best HER yield of 5.29 mmol g−1 and rate of 1.32 mmol g−1 h−1, outperforming the negligible HER performance of pristine metal-free UiO-66-dcbdt. This work provides insight to manipulation of thiocatecholate functionalities inside MOFs to construct inherent photosensitizing units as well as stable structurally unambiguous active sites for sustainable photocatalytic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI