赖氨酸
胰岛素
内科学
代谢物
内分泌学
胰岛素抵抗
新陈代谢
氨基酸
化学
生物
生物化学
医学
作者
Alice Y. Chang,ANEESH K. ASOKAN,Antigoni Z. Lalia,Dhananjay Sakrikar,Ian R. Lanza,Xuan-Mai Petterson,K. S. Nair
出处
期刊:Diabetes
[American Diabetes Association]
日期:2024-07-05
摘要
Insulin is a key regulator of amino acids (AAs) metabolism. Many plasma AAs, including lysine and its metabolite, α-aminoadipic acid (α-AA), a predictor for developing diabetes, are elevated in insulin resistance. In 18 insulin-resistant (IR) over-weight women with polycystic ovary syndrome compared to 12 lean controls, high physiological insulin during a euglycemic clamp failed to normalize many elevated AA metabolites, including branched-chain and aromatic AA, alphaamino- butyric acid, and lysine, but normalized α-AA. To understand the underpinning of differential responses of lysine and its metabolic product α-AA to high physiological insulin in IR compared to controls, we developed a kinetic model utilizing [α-15N1] lysine and [13C1] α-AA as tracers and measured the two tracers simultaneously in α-AA by innovative mass spectrometry. High insulin increased lysine conversion to α-AA in IR and controls but failed to normalize plasma lysine concentrations in IR due to a decrease in lysine metabolic clearance rate (MCR). In contrast, despite higher conversion rates of lysine to α-AA by high insulin, α-AA concentration decreased in IR because of the sustained greater MCR of α-AA. The abnormal AAs and metabolites, even while on high physiological insulin, could potentially explain many functional derangements in IR.
科研通智能强力驱动
Strongly Powered by AbleSci AI