Dispute Classification and Analysis: Deep Learning–Based Text Mining for Construction Contract Management

计算机科学 法令 深度学习 施工合同 争议解决 人工智能 政府(语言学) 滤波器(信号处理) 建设性的 相继的 任务(项目管理) 建筑 施工管理 机器学习 合同管理 工程类 业务 政治学 过程(计算) 法学 艺术 土木工程 视觉艺术 哲学 营销 程序设计语言 系统工程 计算机视觉 操作系统 语言学
作者
Botao Zhong,Luoxin Shen,Xing Pan,Xueyan Zhong,Wanlei He
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (1) 被引量:4
标识
DOI:10.1061/jcemd4.coeng-14080
摘要

Disputes routinely arise in construction projects and significantly affect costs and scheduling. Learning from previous disputes is pivotal for construction contract management. This research focuses on extracting valuable information from government-issued statute that is involved in construction contract dispute, which is underexplored but useful for better construction contract management. The research presented in this study explores and evaluates five typical shallow learning models and four deep learning models for the multilabel text classification task that provide the ability to analyze dispute cases with statute outcomes automatically. Furthermore, model optimizations in some control variables (i.e., model grid search) are conducted to provide constructive model selection suggestions in practical text mining applications. Results show that the text convolution neural network model with 256 filter number and [1,2,3,4] filter size is a suitable backbone architecture for classifying construction dispute cases, which produced the best performance with the P@1(%), P@3(%), P@5(%), NDCG@1(%), NDCG@3(%), and NDCG@5(%) by 65.99, 54.60, 44.32, 65.99, 62.41, and 65.09. In conclusion, the contributions of this research mainly cover the following: (1) exploring and evaluating several multilabel classification models in construction dispute classification tasks and making further model optimizations and (2) the automatic generation of government-issued statutes enabling contract administrators to understand and evaluate the worth of their claims prior to taking it to litigation and therefore put in place strategies to reduce and resolve dispute in construction contract management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我不完成签到,获得积分10
1秒前
QQ发布了新的文献求助10
1秒前
乐乐应助dzhe采纳,获得10
2秒前
2秒前
万能图书馆应助冷傲海采纳,获得10
2秒前
热水发布了新的文献求助10
3秒前
兴奋的定帮应助妍妍采纳,获得10
3秒前
棋鬼王发布了新的文献求助30
4秒前
684654684完成签到,获得积分10
4秒前
三气诸葛亮完成签到,获得积分10
5秒前
April完成签到 ,获得积分0
5秒前
苗玉发布了新的文献求助10
6秒前
wqkkk完成签到,获得积分20
8秒前
老实的小蝴蝶完成签到,获得积分10
9秒前
小粽子完成签到,获得积分10
9秒前
眼睛大雨筠应助晓湫采纳,获得20
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
Zkxxxx应助大万采纳,获得10
12秒前
扎心应助老实的小蝴蝶采纳,获得10
13秒前
13秒前
Siriya完成签到,获得积分10
15秒前
隐形曼青应助icee采纳,获得10
15秒前
健康的怡发布了新的文献求助10
16秒前
821108pan发布了新的文献求助10
16秒前
Blank完成签到 ,获得积分10
16秒前
18秒前
20秒前
一台小钢炮完成签到,获得积分10
21秒前
wangyf完成签到,获得积分10
23秒前
冷傲海发布了新的文献求助10
24秒前
26秒前
26秒前
29秒前
30秒前
31秒前
偷走太阳去兜风完成签到,获得积分20
32秒前
windy7发布了新的文献求助10
33秒前
大个应助fcyyc采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958164
求助须知:如何正确求助?哪些是违规求助? 3504370
关于积分的说明 11118094
捐赠科研通 3235637
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547