Dispute Classification and Analysis: Deep Learning–Based Text Mining for Construction Contract Management

计算机科学 法令 深度学习 施工合同 争议解决 人工智能 政府(语言学) 滤波器(信号处理) 建设性的 相继的 任务(项目管理) 建筑 施工管理 机器学习 合同管理 工程类 业务 政治学 过程(计算) 法学 艺术 语言学 哲学 系统工程 营销 计算机视觉 视觉艺术 程序设计语言 操作系统 土木工程
作者
Botao Zhong,Luoxin Shen,Xing Pan,Xueyan Zhong,Wanlei He
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (1) 被引量:4
标识
DOI:10.1061/jcemd4.coeng-14080
摘要

Disputes routinely arise in construction projects and significantly affect costs and scheduling. Learning from previous disputes is pivotal for construction contract management. This research focuses on extracting valuable information from government-issued statute that is involved in construction contract dispute, which is underexplored but useful for better construction contract management. The research presented in this study explores and evaluates five typical shallow learning models and four deep learning models for the multilabel text classification task that provide the ability to analyze dispute cases with statute outcomes automatically. Furthermore, model optimizations in some control variables (i.e., model grid search) are conducted to provide constructive model selection suggestions in practical text mining applications. Results show that the text convolution neural network model with 256 filter number and [1,2,3,4] filter size is a suitable backbone architecture for classifying construction dispute cases, which produced the best performance with the P@1(%), P@3(%), P@5(%), NDCG@1(%), NDCG@3(%), and NDCG@5(%) by 65.99, 54.60, 44.32, 65.99, 62.41, and 65.09. In conclusion, the contributions of this research mainly cover the following: (1) exploring and evaluating several multilabel classification models in construction dispute classification tasks and making further model optimizations and (2) the automatic generation of government-issued statutes enabling contract administrators to understand and evaluate the worth of their claims prior to taking it to litigation and therefore put in place strategies to reduce and resolve dispute in construction contract management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等你下课发布了新的文献求助10
刚刚
田様应助顺心的水之采纳,获得10
刚刚
刚刚
1秒前
momo发布了新的文献求助10
1秒前
姜姜完成签到,获得积分10
1秒前
小高子完成签到,获得积分10
1秒前
陆千万发布了新的文献求助10
2秒前
2秒前
Jasper应助xxxxx采纳,获得10
2秒前
2秒前
Lucas应助summerstar采纳,获得10
3秒前
steve发布了新的文献求助10
4秒前
Gospel发布了新的文献求助10
4秒前
哆啦A梦完成签到,获得积分10
4秒前
4秒前
5秒前
灵巧的翠桃完成签到,获得积分10
5秒前
6秒前
小蘑菇应助雪时晴采纳,获得10
6秒前
缺粥发布了新的文献求助10
7秒前
好啊发布了新的文献求助10
7秒前
7秒前
yoyo122关注了科研通微信公众号
7秒前
8秒前
摆渡人完成签到,获得积分10
9秒前
recco发布了新的文献求助10
9秒前
9秒前
竹筏过海应助二二采纳,获得30
9秒前
洪对对发布了新的文献求助10
10秒前
10秒前
10秒前
hcl发布了新的文献求助10
10秒前
所所应助为人朴素的小马采纳,获得10
11秒前
喜悦的浩阑完成签到,获得积分10
11秒前
Miller应助呜啦啦采纳,获得10
11秒前
田様应助缺粥采纳,获得10
12秒前
12秒前
12秒前
Tss发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148815
求助须知:如何正确求助?哪些是违规求助? 2799847
关于积分的说明 7837294
捐赠科研通 2457351
什么是DOI,文献DOI怎么找? 1307824
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663