Dispute Classification and Analysis: Deep Learning–Based Text Mining for Construction Contract Management

计算机科学 法令 深度学习 施工合同 争议解决 人工智能 政府(语言学) 滤波器(信号处理) 建设性的 相继的 任务(项目管理) 建筑 施工管理 机器学习 合同管理 工程类 业务 政治学 过程(计算) 法学 艺术 语言学 哲学 系统工程 营销 计算机视觉 视觉艺术 程序设计语言 操作系统 土木工程
作者
Botao Zhong,Luoxin Shen,Xing Pan,Xueyan Zhong,Wanlei He
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (1) 被引量:4
标识
DOI:10.1061/jcemd4.coeng-14080
摘要

Disputes routinely arise in construction projects and significantly affect costs and scheduling. Learning from previous disputes is pivotal for construction contract management. This research focuses on extracting valuable information from government-issued statute that is involved in construction contract dispute, which is underexplored but useful for better construction contract management. The research presented in this study explores and evaluates five typical shallow learning models and four deep learning models for the multilabel text classification task that provide the ability to analyze dispute cases with statute outcomes automatically. Furthermore, model optimizations in some control variables (i.e., model grid search) are conducted to provide constructive model selection suggestions in practical text mining applications. Results show that the text convolution neural network model with 256 filter number and [1,2,3,4] filter size is a suitable backbone architecture for classifying construction dispute cases, which produced the best performance with the P@1(%), P@3(%), P@5(%), NDCG@1(%), NDCG@3(%), and NDCG@5(%) by 65.99, 54.60, 44.32, 65.99, 62.41, and 65.09. In conclusion, the contributions of this research mainly cover the following: (1) exploring and evaluating several multilabel classification models in construction dispute classification tasks and making further model optimizations and (2) the automatic generation of government-issued statutes enabling contract administrators to understand and evaluate the worth of their claims prior to taking it to litigation and therefore put in place strategies to reduce and resolve dispute in construction contract management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
22发布了新的文献求助10
刚刚
aacc956发布了新的文献求助10
刚刚
刚刚
谨慎涵柏完成签到,获得积分10
1秒前
快乐的如风完成签到,获得积分10
2秒前
3秒前
吃猫的鱼完成签到,获得积分10
3秒前
脑洞疼应助润润轩轩采纳,获得10
4秒前
刘文静完成签到,获得积分10
5秒前
Southluuu发布了新的文献求助10
5秒前
chenjyuu发布了新的文献求助10
5秒前
5秒前
粗暴的仙人掌完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
logic发布了新的文献求助10
6秒前
习习应助生动的雨竹采纳,获得10
6秒前
bo完成签到 ,获得积分10
6秒前
迟大猫应助啵乐乐采纳,获得10
7秒前
安雯完成签到 ,获得积分10
7秒前
HuLL完成签到,获得积分10
7秒前
Yolo完成签到 ,获得积分10
7秒前
难过的慕青完成签到,获得积分10
7秒前
9秒前
9秒前
9秒前
10秒前
无花果应助sunzhiyu233采纳,获得10
10秒前
韭黄完成签到,获得积分20
10秒前
11秒前
诚c发布了新的文献求助10
11秒前
自然秋柳完成签到 ,获得积分10
11秒前
我是老大应助经法采纳,获得10
11秒前
默默的皮牙子应助经法采纳,获得10
11秒前
orixero应助经法采纳,获得10
11秒前
小马甲应助经法采纳,获得10
11秒前
柚子成精应助经法采纳,获得10
12秒前
小蘑菇应助经法采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759