Deep Multi-Modal Discriminative and Interpretability Network for Alzheimer’s Disease Diagnosis

判别式 可解释性 人工智能 计算机科学 典型相关 模式识别(心理学) 深度学习 特征提取 机器学习 特征(语言学) 卷积神经网络 代表(政治) 特征学习 法学 哲学 政治 语言学 政治学
作者
Qi Zhu,Bingliang Xu,Jiashuang Huang,Heyang Wang,Ruting Xu,Wei Shao,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1472-1483 被引量:29
标识
DOI:10.1109/tmi.2022.3230750
摘要

Multi-modal fusion has become an important data analysis technology in Alzheimer's disease (AD) diagnosis, which is committed to effectively extract and utilize complementary information among different modalities. However, most of the existing fusion methods focus on pursuing common feature representation by transformation, and ignore discriminative structural information among samples. In addition, most fusion methods use high-order feature extraction, such as deep neural network, by which it is difficult to identify biomarkers. In this paper, we propose a novel method named deep multi-modal discriminative and interpretability network (DMDIN), which aligns samples in a discriminative common space and provides a new approach to identify significant brain regions (ROIs) in AD diagnosis. Specifically, we reconstruct each modality with a hierarchical representation through multilayer perceptron (MLP), and take advantage of the shared self-expression coefficients constrained by diagonal blocks to embed the structural information of inter-class and the intra-class. Further, the generalized canonical correlation analysis (GCCA) is adopted as a correlation constraint to generate a discriminative common space, in which samples of the same category gather while samples of different categories stay away. Finally, in order to enhance the interpretability of the deep learning model, we utilize knowledge distillation to reproduce coordinated representations and capture influence of brain regions in AD classification. Experiments show that the proposed method performs better than several state-of-the-art methods in AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助GHL采纳,获得10
刚刚
ZXC发布了新的文献求助10
1秒前
1秒前
illuminate完成签到 ,获得积分10
2秒前
科研通AI5应助严格采纳,获得10
2秒前
可爱的函函应助魄魄olm采纳,获得10
2秒前
刘七七努力搞科研完成签到 ,获得积分10
6秒前
波比冰苏打完成签到,获得积分10
9秒前
11秒前
科研通AI5应助zjkzh采纳,获得10
11秒前
海豚发布了新的文献求助10
14秒前
kirazou完成签到,获得积分10
14秒前
呼呼虫完成签到 ,获得积分10
14秒前
14秒前
颜陌完成签到,获得积分10
16秒前
严格发布了新的文献求助10
18秒前
赵大大完成签到,获得积分10
18秒前
标致发布了新的文献求助10
18秒前
WbinWu完成签到,获得积分10
20秒前
qiu发布了新的文献求助10
23秒前
温柔的白秋完成签到,获得积分10
26秒前
Ava应助北辰采纳,获得10
27秒前
加菲丰丰应助星期一采纳,获得10
30秒前
爱学习的我完成签到 ,获得积分10
32秒前
36秒前
思源应助辣驴采纳,获得30
36秒前
七个小矮人完成签到,获得积分10
37秒前
Jasper应助标致采纳,获得10
37秒前
TingtingGZ完成签到,获得积分10
38秒前
38秒前
39秒前
赘婿应助gotolian采纳,获得10
39秒前
41秒前
博修发布了新的文献求助10
42秒前
Amikacin完成签到,获得积分10
42秒前
李尘一发布了新的文献求助20
43秒前
852应助漠然采纳,获得10
44秒前
科研通AI5应助yy采纳,获得10
48秒前
50秒前
50秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3675228
求助须知:如何正确求助?哪些是违规求助? 3230109
关于积分的说明 9788889
捐赠科研通 2940864
什么是DOI,文献DOI怎么找? 1612268
邀请新用户注册赠送积分活动 761065
科研通“疑难数据库(出版商)”最低求助积分说明 736596