Deep Multi-Modal Discriminative and Interpretability Network for Alzheimer’s Disease Diagnosis

判别式 可解释性 人工智能 计算机科学 典型相关 模式识别(心理学) 深度学习 特征提取 机器学习 特征(语言学) 卷积神经网络 代表(政治) 特征学习 法学 哲学 政治 语言学 政治学
作者
Qi Zhu,Bingliang Xu,Jiashuang Huang,Heyang Wang,Ruting Xu,Wei Shao,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1472-1483 被引量:24
标识
DOI:10.1109/tmi.2022.3230750
摘要

Multi-modal fusion has become an important data analysis technology in Alzheimer's disease (AD) diagnosis, which is committed to effectively extract and utilize complementary information among different modalities. However, most of the existing fusion methods focus on pursuing common feature representation by transformation, and ignore discriminative structural information among samples. In addition, most fusion methods use high-order feature extraction, such as deep neural network, by which it is difficult to identify biomarkers. In this paper, we propose a novel method named deep multi-modal discriminative and interpretability network (DMDIN), which aligns samples in a discriminative common space and provides a new approach to identify significant brain regions (ROIs) in AD diagnosis. Specifically, we reconstruct each modality with a hierarchical representation through multilayer perceptron (MLP), and take advantage of the shared self-expression coefficients constrained by diagonal blocks to embed the structural information of inter-class and the intra-class. Further, the generalized canonical correlation analysis (GCCA) is adopted as a correlation constraint to generate a discriminative common space, in which samples of the same category gather while samples of different categories stay away. Finally, in order to enhance the interpretability of the deep learning model, we utilize knowledge distillation to reproduce coordinated representations and capture influence of brain regions in AD classification. Experiments show that the proposed method performs better than several state-of-the-art methods in AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫以冬完成签到,获得积分10
1秒前
Grace完成签到 ,获得积分10
3秒前
Yu发布了新的文献求助10
5秒前
超文献发布了新的文献求助10
6秒前
科研小白发布了新的文献求助10
8秒前
tuanheqi应助chillin采纳,获得100
8秒前
8秒前
仔拉完成签到,获得积分10
10秒前
11秒前
顾矜应助负责的寒梅采纳,获得30
11秒前
13秒前
mm完成签到 ,获得积分10
13秒前
14秒前
李李发布了新的文献求助10
16秒前
科研通AI2S应助超文献采纳,获得10
17秒前
17秒前
daladala发布了新的文献求助10
18秒前
琳琳发布了新的文献求助10
19秒前
小朱完成签到 ,获得积分10
20秒前
努力的小狗屁完成签到 ,获得积分10
21秒前
lilili发布了新的文献求助10
22秒前
23秒前
Minerva发布了新的文献求助10
23秒前
科研小白完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
EVAN完成签到,获得积分10
25秒前
隐形曼青应助自由的水卉采纳,获得10
26秒前
陶军辉发布了新的文献求助10
28秒前
anhong99999发布了新的文献求助10
29秒前
健康的妙松关注了科研通微信公众号
30秒前
耳东发布了新的文献求助10
31秒前
XuanZhang完成签到,获得积分10
31秒前
32秒前
雪山飞龙发布了新的文献求助10
33秒前
34秒前
35秒前
lacan发布了新的文献求助10
36秒前
科目三应助Minerva采纳,获得10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023