Deep Multi-Modal Discriminative and Interpretability Network for Alzheimer’s Disease Diagnosis

判别式 可解释性 人工智能 计算机科学 典型相关 模式识别(心理学) 深度学习 特征提取 机器学习 特征(语言学) 卷积神经网络 代表(政治) 特征学习 政治 哲学 语言学 法学 政治学
作者
Qi Zhu,Bingliang Xu,Jiashuang Huang,Heyang Wang,Ruting Xu,Wei Shao,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1472-1483 被引量:54
标识
DOI:10.1109/tmi.2022.3230750
摘要

Multi-modal fusion has become an important data analysis technology in Alzheimer's disease (AD) diagnosis, which is committed to effectively extract and utilize complementary information among different modalities. However, most of the existing fusion methods focus on pursuing common feature representation by transformation, and ignore discriminative structural information among samples. In addition, most fusion methods use high-order feature extraction, such as deep neural network, by which it is difficult to identify biomarkers. In this paper, we propose a novel method named deep multi-modal discriminative and interpretability network (DMDIN), which aligns samples in a discriminative common space and provides a new approach to identify significant brain regions (ROIs) in AD diagnosis. Specifically, we reconstruct each modality with a hierarchical representation through multilayer perceptron (MLP), and take advantage of the shared self-expression coefficients constrained by diagonal blocks to embed the structural information of inter-class and the intra-class. Further, the generalized canonical correlation analysis (GCCA) is adopted as a correlation constraint to generate a discriminative common space, in which samples of the same category gather while samples of different categories stay away. Finally, in order to enhance the interpretability of the deep learning model, we utilize knowledge distillation to reproduce coordinated representations and capture influence of brain regions in AD classification. Experiments show that the proposed method performs better than several state-of-the-art methods in AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yc完成签到 ,获得积分10
1秒前
Cindy完成签到,获得积分10
1秒前
星川完成签到,获得积分10
2秒前
xuaotian完成签到,获得积分10
5秒前
刘芮完成签到,获得积分10
7秒前
LAN完成签到,获得积分10
7秒前
游艺完成签到 ,获得积分10
8秒前
随缘来一个吧完成签到 ,获得积分10
14秒前
demom完成签到 ,获得积分10
15秒前
19秒前
虚幻怀莲完成签到,获得积分10
22秒前
Dong完成签到 ,获得积分10
22秒前
ran完成签到 ,获得积分10
22秒前
23秒前
龙眼完成签到,获得积分10
23秒前
芙瑞完成签到 ,获得积分10
24秒前
31秒前
ShellyMaya完成签到 ,获得积分10
34秒前
35秒前
夜神月发布了新的文献求助10
36秒前
stephenzh完成签到,获得积分10
38秒前
精明黄蜂完成签到 ,获得积分10
39秒前
机智的阿振完成签到,获得积分10
40秒前
吴律完成签到,获得积分10
41秒前
小潘完成签到 ,获得积分10
43秒前
哈哈完成签到 ,获得积分10
44秒前
one完成签到 ,获得积分10
49秒前
冷如松发布了新的文献求助20
49秒前
53秒前
CodeCraft应助科研通管家采纳,获得10
57秒前
布蓝图完成签到 ,获得积分10
58秒前
NexusExplorer应助科研通管家采纳,获得10
58秒前
58秒前
Summer完成签到 ,获得积分10
59秒前
鸭鸭完成签到 ,获得积分10
1分钟前
冷如松完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助野椒搞科研采纳,获得30
1分钟前
coolru完成签到,获得积分10
1分钟前
fyy完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212420
求助须知:如何正确求助?哪些是违规求助? 4388601
关于积分的说明 13664165
捐赠科研通 4249133
什么是DOI,文献DOI怎么找? 2331417
邀请新用户注册赠送积分活动 1329109
关于科研通互助平台的介绍 1282517