已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pretreatment information–aided automatic segmentation for online magnetic resonance imaging‐guided prostate radiotherapy

轮廓 分割 图像配准 磁共振成像 放射治疗计划 人工智能 计算机科学 图像分割 计算机视觉 医学 核医学 医学影像学 放射治疗 放射科 图像(数学) 计算机图形学(图像)
作者
Baiyu Yang,Yuxiang Liu,Ji Zhu,Ningning Liu,Jianrong Dai,Kuo Men
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.16608
摘要

Abstract Background It is necessary to contour regions of interest (ROIs) for online magnetic resonance imaging (MRI)‐guided adaptive radiotherapy (MRIgART). These updated contours are used for online replanning to obtain maximum dosimetric benefits. Contouring can be accomplished using deformable image registration (DIR) and deep learning (DL)‐based autosegmentation methods. However, these methods may require considerable manual editing and thus prolong treatment time. Purpose The present study aimed to improve autosegmentation performance by integrating patients’ pretreatment information in a DL‐based segmentation algorithm. It is expected to improve the efficiency of current MRIgART process. Methods Forty patients with prostate cancer were enrolled retrospectively. The online adaptive MR images, patient‐specific planning computed tomography (CT), and contours in CT were used for segmentation. The deformable registration of planning CT and MR images was performed first to obtain a deformable CT and corresponding contours. A novel DL network, which can integrate such patient‐specific information (deformable CT and corresponding contours) into the segmentation task of MR images was designed. We performed a four‐fold cross‐validation for the DL models. The proposed method was compared with DIR and DL methods on segmentation of prostate cancer. The ROIs included the clinical target volume (CTV), bladder, rectum, left femur head, and right femur head. Dosimetric parameters of automatically generated ROIs were evaluated using a clinical treatment planning system. Results The proposed method enhanced the segmentation accuracy of conventional procedures. Its mean value of the dice similarity coefficient (93.5%) over the five ROIs was higher than both DIR (87.5%) and DL (87.2%). The number of patients ( n = 40) that required major editing using DIR, DL, and our method were 12, 18, and 7 (CTV); 17, 4, and 1 (bladder); 8, 11, and 5 (rectum); 2, 4, and 1 (left femur head); and 3, 7, and 1 (right femur head), respectively. The Spearman rank correlation coefficient of dosimetry parameters between the proposed method and ground truth was 0.972 ± 0.040, higher than that of DIR (0.897 ± 0.098) and DL (0.871 ± 0.134). Conclusion This study proposed a novel method that integrates patient‐specific pretreatment information into DL‐based segmentation algorithm. It outperformed baseline methods, thereby improving the efficiency and segmentation accuracy in adaptive radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陨落星辰发布了新的文献求助10
1秒前
transition发布了新的文献求助10
1秒前
SciGPT应助Chloe采纳,获得10
2秒前
HJJHJH发布了新的文献求助10
3秒前
Cosmosurfer完成签到,获得积分10
7秒前
transition完成签到,获得积分10
8秒前
罗皮特完成签到 ,获得积分10
10秒前
12秒前
田様应助大宝君采纳,获得10
13秒前
14秒前
16秒前
Davidjin发布了新的文献求助10
16秒前
outlast完成签到,获得积分10
17秒前
111发布了新的文献求助10
19秒前
20秒前
善学以致用应助呵呵采纳,获得10
23秒前
宝可梦大师完成签到,获得积分10
25秒前
30秒前
32秒前
NexusExplorer应助渭禾采纳,获得10
34秒前
34秒前
酷酷问夏完成签到 ,获得积分10
35秒前
风中元瑶完成签到 ,获得积分10
35秒前
36秒前
37秒前
常青发布了新的文献求助10
37秒前
聂聪发布了新的文献求助10
41秒前
黄HYK完成签到 ,获得积分10
43秒前
余松林完成签到,获得积分10
43秒前
tang完成签到,获得积分10
43秒前
在水一方应助Bella采纳,获得10
44秒前
平常念蕾完成签到 ,获得积分10
45秒前
46秒前
广州小肥羊完成签到 ,获得积分10
50秒前
51秒前
51秒前
blue2021发布了新的文献求助10
54秒前
0_08完成签到,获得积分10
55秒前
烟花应助聪慧的致远采纳,获得10
55秒前
Leo发布了新的文献求助10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890007
捐赠科研通 4727175
什么是DOI,文献DOI怎么找? 2545923
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236