Pretreatment information–aided automatic segmentation for online magnetic resonance imaging‐guided prostate radiotherapy

轮廓 分割 图像配准 磁共振成像 放射治疗计划 人工智能 计算机科学 图像分割 计算机视觉 医学 核医学 医学影像学 放射治疗 放射科 图像(数学) 计算机图形学(图像)
作者
Baiyu Yang,Yuxiang Liu,Ji Zhu,Ningning Liu,Jianrong Dai,Kuo Men
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.16608
摘要

Abstract Background It is necessary to contour regions of interest (ROIs) for online magnetic resonance imaging (MRI)‐guided adaptive radiotherapy (MRIgART). These updated contours are used for online replanning to obtain maximum dosimetric benefits. Contouring can be accomplished using deformable image registration (DIR) and deep learning (DL)‐based autosegmentation methods. However, these methods may require considerable manual editing and thus prolong treatment time. Purpose The present study aimed to improve autosegmentation performance by integrating patients’ pretreatment information in a DL‐based segmentation algorithm. It is expected to improve the efficiency of current MRIgART process. Methods Forty patients with prostate cancer were enrolled retrospectively. The online adaptive MR images, patient‐specific planning computed tomography (CT), and contours in CT were used for segmentation. The deformable registration of planning CT and MR images was performed first to obtain a deformable CT and corresponding contours. A novel DL network, which can integrate such patient‐specific information (deformable CT and corresponding contours) into the segmentation task of MR images was designed. We performed a four‐fold cross‐validation for the DL models. The proposed method was compared with DIR and DL methods on segmentation of prostate cancer. The ROIs included the clinical target volume (CTV), bladder, rectum, left femur head, and right femur head. Dosimetric parameters of automatically generated ROIs were evaluated using a clinical treatment planning system. Results The proposed method enhanced the segmentation accuracy of conventional procedures. Its mean value of the dice similarity coefficient (93.5%) over the five ROIs was higher than both DIR (87.5%) and DL (87.2%). The number of patients ( n = 40) that required major editing using DIR, DL, and our method were 12, 18, and 7 (CTV); 17, 4, and 1 (bladder); 8, 11, and 5 (rectum); 2, 4, and 1 (left femur head); and 3, 7, and 1 (right femur head), respectively. The Spearman rank correlation coefficient of dosimetry parameters between the proposed method and ground truth was 0.972 ± 0.040, higher than that of DIR (0.897 ± 0.098) and DL (0.871 ± 0.134). Conclusion This study proposed a novel method that integrates patient‐specific pretreatment information into DL‐based segmentation algorithm. It outperformed baseline methods, thereby improving the efficiency and segmentation accuracy in adaptive radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
yzx发布了新的文献求助10
5秒前
记ds发布了新的文献求助10
6秒前
张火火发布了新的文献求助10
9秒前
斯文败类应助WJP采纳,获得10
9秒前
乐乐应助完美修杰采纳,获得10
9秒前
10秒前
11秒前
11秒前
善学以致用应助记ds采纳,获得10
12秒前
梨子完成签到,获得积分10
13秒前
13秒前
13秒前
guojingjing发布了新的文献求助10
14秒前
可爱的函函应助K0h采纳,获得10
14秒前
changping应助烟酒僧采纳,获得10
16秒前
炙热的以南完成签到 ,获得积分10
16秒前
16秒前
科研通AI2S应助张火火采纳,获得10
16秒前
梨子发布了新的文献求助10
17秒前
Wdw2236发布了新的文献求助10
17秒前
外向的慕灵完成签到,获得积分10
19秒前
zzk发布了新的文献求助10
19秒前
小江不饿完成签到,获得积分10
21秒前
Hao发布了新的文献求助10
22秒前
24秒前
占那个完成签到 ,获得积分10
24秒前
wangcaoyi667完成签到,获得积分10
24秒前
传奇3应助guojingjing采纳,获得10
25秒前
27秒前
27秒前
大个应助烟酒僧采纳,获得10
28秒前
28秒前
缓慢怜翠发布了新的文献求助10
29秒前
29秒前
彭于晏应助白茶泡泡球采纳,获得10
30秒前
坦率灵煌完成签到,获得积分10
31秒前
一针超人发布了新的文献求助10
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208823
求助须知:如何正确求助?哪些是违规求助? 4386109
关于积分的说明 13660182
捐赠科研通 4245203
什么是DOI,文献DOI怎么找? 2329161
邀请新用户注册赠送积分活动 1326969
关于科研通互助平台的介绍 1279265