Pretreatment information–aided automatic segmentation for online magnetic resonance imaging‐guided prostate radiotherapy

轮廓 分割 图像配准 磁共振成像 放射治疗计划 人工智能 计算机科学 图像分割 计算机视觉 医学 核医学 医学影像学 放射治疗 放射科 图像(数学) 计算机图形学(图像)
作者
Baiyu Yang,Yuxiang Liu,Ji Zhu,Ningning Liu,Jianrong Dai,Kuo Men
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.16608
摘要

Abstract Background It is necessary to contour regions of interest (ROIs) for online magnetic resonance imaging (MRI)‐guided adaptive radiotherapy (MRIgART). These updated contours are used for online replanning to obtain maximum dosimetric benefits. Contouring can be accomplished using deformable image registration (DIR) and deep learning (DL)‐based autosegmentation methods. However, these methods may require considerable manual editing and thus prolong treatment time. Purpose The present study aimed to improve autosegmentation performance by integrating patients’ pretreatment information in a DL‐based segmentation algorithm. It is expected to improve the efficiency of current MRIgART process. Methods Forty patients with prostate cancer were enrolled retrospectively. The online adaptive MR images, patient‐specific planning computed tomography (CT), and contours in CT were used for segmentation. The deformable registration of planning CT and MR images was performed first to obtain a deformable CT and corresponding contours. A novel DL network, which can integrate such patient‐specific information (deformable CT and corresponding contours) into the segmentation task of MR images was designed. We performed a four‐fold cross‐validation for the DL models. The proposed method was compared with DIR and DL methods on segmentation of prostate cancer. The ROIs included the clinical target volume (CTV), bladder, rectum, left femur head, and right femur head. Dosimetric parameters of automatically generated ROIs were evaluated using a clinical treatment planning system. Results The proposed method enhanced the segmentation accuracy of conventional procedures. Its mean value of the dice similarity coefficient (93.5%) over the five ROIs was higher than both DIR (87.5%) and DL (87.2%). The number of patients ( n = 40) that required major editing using DIR, DL, and our method were 12, 18, and 7 (CTV); 17, 4, and 1 (bladder); 8, 11, and 5 (rectum); 2, 4, and 1 (left femur head); and 3, 7, and 1 (right femur head), respectively. The Spearman rank correlation coefficient of dosimetry parameters between the proposed method and ground truth was 0.972 ± 0.040, higher than that of DIR (0.897 ± 0.098) and DL (0.871 ± 0.134). Conclusion This study proposed a novel method that integrates patient‐specific pretreatment information into DL‐based segmentation algorithm. It outperformed baseline methods, thereby improving the efficiency and segmentation accuracy in adaptive radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博儒艾特发布了新的文献求助10
刚刚
刚刚
你好发布了新的文献求助10
刚刚
冷艳的半凡完成签到,获得积分10
1秒前
2秒前
hll关注了科研通微信公众号
2秒前
wu完成签到,获得积分10
2秒前
乐乐应助能干梦安采纳,获得10
3秒前
3秒前
刘佳慧发布了新的文献求助10
3秒前
save发布了新的文献求助10
4秒前
4秒前
今后应助LaffiteElla采纳,获得10
6秒前
藜誌完成签到,获得积分10
7秒前
7秒前
能干梦安完成签到,获得积分10
7秒前
haha完成签到,获得积分10
8秒前
岩下松风完成签到,获得积分10
8秒前
浮游应助shang采纳,获得10
10秒前
10秒前
10秒前
彼岸发布了新的文献求助10
11秒前
12秒前
12秒前
桐桐应助木木采纳,获得10
13秒前
温柔依云完成签到,获得积分10
14秒前
CodeCraft应助我爱读文献采纳,获得10
15秒前
夏熠完成签到,获得积分10
15秒前
15秒前
shaishai发布了新的文献求助10
16秒前
我是老大应助能HJY采纳,获得30
16秒前
上官若男应助调皮摇伽采纳,获得10
16秒前
17秒前
17秒前
KKK关闭了KKK文献求助
18秒前
19秒前
20秒前
yingying完成签到,获得积分10
20秒前
小麦发布了新的文献求助10
21秒前
Z_jx完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818