Pretreatment information–aided automatic segmentation for online magnetic resonance imaging‐guided prostate radiotherapy

轮廓 分割 图像配准 磁共振成像 放射治疗计划 人工智能 计算机科学 图像分割 计算机视觉 医学 核医学 医学影像学 放射治疗 放射科 图像(数学) 计算机图形学(图像)
作者
Baiyu Yang,Yuxiang Liu,Ji Zhu,Ningning Liu,Jianrong Dai,Kuo Men
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.16608
摘要

Abstract Background It is necessary to contour regions of interest (ROIs) for online magnetic resonance imaging (MRI)‐guided adaptive radiotherapy (MRIgART). These updated contours are used for online replanning to obtain maximum dosimetric benefits. Contouring can be accomplished using deformable image registration (DIR) and deep learning (DL)‐based autosegmentation methods. However, these methods may require considerable manual editing and thus prolong treatment time. Purpose The present study aimed to improve autosegmentation performance by integrating patients’ pretreatment information in a DL‐based segmentation algorithm. It is expected to improve the efficiency of current MRIgART process. Methods Forty patients with prostate cancer were enrolled retrospectively. The online adaptive MR images, patient‐specific planning computed tomography (CT), and contours in CT were used for segmentation. The deformable registration of planning CT and MR images was performed first to obtain a deformable CT and corresponding contours. A novel DL network, which can integrate such patient‐specific information (deformable CT and corresponding contours) into the segmentation task of MR images was designed. We performed a four‐fold cross‐validation for the DL models. The proposed method was compared with DIR and DL methods on segmentation of prostate cancer. The ROIs included the clinical target volume (CTV), bladder, rectum, left femur head, and right femur head. Dosimetric parameters of automatically generated ROIs were evaluated using a clinical treatment planning system. Results The proposed method enhanced the segmentation accuracy of conventional procedures. Its mean value of the dice similarity coefficient (93.5%) over the five ROIs was higher than both DIR (87.5%) and DL (87.2%). The number of patients ( n = 40) that required major editing using DIR, DL, and our method were 12, 18, and 7 (CTV); 17, 4, and 1 (bladder); 8, 11, and 5 (rectum); 2, 4, and 1 (left femur head); and 3, 7, and 1 (right femur head), respectively. The Spearman rank correlation coefficient of dosimetry parameters between the proposed method and ground truth was 0.972 ± 0.040, higher than that of DIR (0.897 ± 0.098) and DL (0.871 ± 0.134). Conclusion This study proposed a novel method that integrates patient‐specific pretreatment information into DL‐based segmentation algorithm. It outperformed baseline methods, thereby improving the efficiency and segmentation accuracy in adaptive radiotherapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助女汉志采纳,获得10
1秒前
N维完成签到,获得积分10
1秒前
海盐咸喵完成签到 ,获得积分10
1秒前
1秒前
star应助hahaha采纳,获得10
2秒前
Howes91发布了新的文献求助10
2秒前
星辰大海应助剑K采纳,获得10
3秒前
myli发布了新的文献求助10
3秒前
4秒前
hsq发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
清爽朋友发布了新的文献求助10
5秒前
李爱国应助smin采纳,获得10
5秒前
qinyinping完成签到,获得积分10
5秒前
西哥完成签到,获得积分10
5秒前
star应助Sickey采纳,获得10
5秒前
Inter09完成签到,获得积分10
5秒前
萧然完成签到,获得积分10
6秒前
布丁儿完成签到 ,获得积分10
6秒前
6秒前
浮游应助cvn001采纳,获得10
6秒前
6秒前
didi完成签到,获得积分10
7秒前
MM完成签到,获得积分10
7秒前
HL完成签到,获得积分10
8秒前
8秒前
8秒前
Hello应助智齿怪物一号采纳,获得10
8秒前
科研通AI2S应助BW打工仔采纳,获得10
9秒前
自觉夜阑发布了新的文献求助10
9秒前
小薛发布了新的文献求助10
9秒前
Arya123000完成签到,获得积分10
9秒前
SKSK发布了新的文献求助30
9秒前
123321完成签到 ,获得积分10
9秒前
二中所长发布了新的文献求助10
9秒前
稳赚赚完成签到,获得积分10
9秒前
无语的断缘完成签到,获得积分10
9秒前
森森完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516585
求助须知:如何正确求助?哪些是违规求助? 4609506
关于积分的说明 14516131
捐赠科研通 4546282
什么是DOI,文献DOI怎么找? 2491148
邀请新用户注册赠送积分活动 1472886
关于科研通互助平台的介绍 1444803