亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pretreatment information–aided automatic segmentation for online magnetic resonance imaging‐guided prostate radiotherapy

轮廓 分割 图像配准 磁共振成像 放射治疗计划 人工智能 计算机科学 图像分割 计算机视觉 医学 核医学 医学影像学 放射治疗 放射科 图像(数学) 计算机图形学(图像)
作者
Baiyu Yang,Yuxiang Liu,Ji Zhu,Ningning Liu,Jianrong Dai,Kuo Men
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.16608
摘要

Abstract Background It is necessary to contour regions of interest (ROIs) for online magnetic resonance imaging (MRI)‐guided adaptive radiotherapy (MRIgART). These updated contours are used for online replanning to obtain maximum dosimetric benefits. Contouring can be accomplished using deformable image registration (DIR) and deep learning (DL)‐based autosegmentation methods. However, these methods may require considerable manual editing and thus prolong treatment time. Purpose The present study aimed to improve autosegmentation performance by integrating patients’ pretreatment information in a DL‐based segmentation algorithm. It is expected to improve the efficiency of current MRIgART process. Methods Forty patients with prostate cancer were enrolled retrospectively. The online adaptive MR images, patient‐specific planning computed tomography (CT), and contours in CT were used for segmentation. The deformable registration of planning CT and MR images was performed first to obtain a deformable CT and corresponding contours. A novel DL network, which can integrate such patient‐specific information (deformable CT and corresponding contours) into the segmentation task of MR images was designed. We performed a four‐fold cross‐validation for the DL models. The proposed method was compared with DIR and DL methods on segmentation of prostate cancer. The ROIs included the clinical target volume (CTV), bladder, rectum, left femur head, and right femur head. Dosimetric parameters of automatically generated ROIs were evaluated using a clinical treatment planning system. Results The proposed method enhanced the segmentation accuracy of conventional procedures. Its mean value of the dice similarity coefficient (93.5%) over the five ROIs was higher than both DIR (87.5%) and DL (87.2%). The number of patients ( n = 40) that required major editing using DIR, DL, and our method were 12, 18, and 7 (CTV); 17, 4, and 1 (bladder); 8, 11, and 5 (rectum); 2, 4, and 1 (left femur head); and 3, 7, and 1 (right femur head), respectively. The Spearman rank correlation coefficient of dosimetry parameters between the proposed method and ground truth was 0.972 ± 0.040, higher than that of DIR (0.897 ± 0.098) and DL (0.871 ± 0.134). Conclusion This study proposed a novel method that integrates patient‐specific pretreatment information into DL‐based segmentation algorithm. It outperformed baseline methods, thereby improving the efficiency and segmentation accuracy in adaptive radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宝贝丫头完成签到 ,获得积分10
1秒前
Anna完成签到 ,获得积分10
6秒前
daomaihu完成签到,获得积分10
7秒前
Xiaoxiao完成签到,获得积分20
9秒前
今后应助不喜采纳,获得10
12秒前
酷波er应助向7看齐采纳,获得10
13秒前
Potato发布了新的文献求助10
14秒前
Xiaoxiao发布了新的文献求助30
14秒前
希望天下0贩的0应助Lasse采纳,获得10
15秒前
小二郎应助Sariel采纳,获得10
16秒前
所所应助星空剪影采纳,获得10
17秒前
18秒前
亦hcy发布了新的文献求助10
19秒前
共享精神应助林钰浩采纳,获得10
19秒前
Potato完成签到,获得积分10
22秒前
科研通AI6应助谢琳采纳,获得10
24秒前
不喜发布了新的文献求助10
25秒前
27秒前
30秒前
张明完成签到 ,获得积分10
30秒前
ao完成签到,获得积分10
32秒前
32秒前
ajinjin完成签到,获得积分10
32秒前
32秒前
娇气的幼南完成签到 ,获得积分10
32秒前
32秒前
爆米花应助杜飞采纳,获得10
32秒前
谢琳完成签到,获得积分10
33秒前
林钰浩发布了新的文献求助10
35秒前
Hello应助bunny采纳,获得10
38秒前
39秒前
夹心饼干完成签到,获得积分10
40秒前
40秒前
林钰浩完成签到,获得积分10
40秒前
He关注了科研通微信公众号
41秒前
英姑应助小猫咪采纳,获得10
42秒前
小二郎应助科研通管家采纳,获得10
46秒前
思源应助科研通管家采纳,获得10
46秒前
酷波er应助科研通管家采纳,获得10
46秒前
CipherSage应助科研通管家采纳,获得10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356411
求助须知:如何正确求助?哪些是违规求助? 4488209
关于积分的说明 13971794
捐赠科研通 4389030
什么是DOI,文献DOI怎么找? 2411357
邀请新用户注册赠送积分活动 1403907
关于科研通互助平台的介绍 1377771