亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pretreatment information–aided automatic segmentation for online magnetic resonance imaging‐guided prostate radiotherapy

轮廓 分割 图像配准 磁共振成像 放射治疗计划 人工智能 计算机科学 图像分割 计算机视觉 医学 核医学 医学影像学 放射治疗 放射科 图像(数学) 计算机图形学(图像)
作者
Baiyu Yang,Yuxiang Liu,Ji Zhu,Ningning Liu,Jianrong Dai,Kuo Men
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.16608
摘要

Abstract Background It is necessary to contour regions of interest (ROIs) for online magnetic resonance imaging (MRI)‐guided adaptive radiotherapy (MRIgART). These updated contours are used for online replanning to obtain maximum dosimetric benefits. Contouring can be accomplished using deformable image registration (DIR) and deep learning (DL)‐based autosegmentation methods. However, these methods may require considerable manual editing and thus prolong treatment time. Purpose The present study aimed to improve autosegmentation performance by integrating patients’ pretreatment information in a DL‐based segmentation algorithm. It is expected to improve the efficiency of current MRIgART process. Methods Forty patients with prostate cancer were enrolled retrospectively. The online adaptive MR images, patient‐specific planning computed tomography (CT), and contours in CT were used for segmentation. The deformable registration of planning CT and MR images was performed first to obtain a deformable CT and corresponding contours. A novel DL network, which can integrate such patient‐specific information (deformable CT and corresponding contours) into the segmentation task of MR images was designed. We performed a four‐fold cross‐validation for the DL models. The proposed method was compared with DIR and DL methods on segmentation of prostate cancer. The ROIs included the clinical target volume (CTV), bladder, rectum, left femur head, and right femur head. Dosimetric parameters of automatically generated ROIs were evaluated using a clinical treatment planning system. Results The proposed method enhanced the segmentation accuracy of conventional procedures. Its mean value of the dice similarity coefficient (93.5%) over the five ROIs was higher than both DIR (87.5%) and DL (87.2%). The number of patients ( n = 40) that required major editing using DIR, DL, and our method were 12, 18, and 7 (CTV); 17, 4, and 1 (bladder); 8, 11, and 5 (rectum); 2, 4, and 1 (left femur head); and 3, 7, and 1 (right femur head), respectively. The Spearman rank correlation coefficient of dosimetry parameters between the proposed method and ground truth was 0.972 ± 0.040, higher than that of DIR (0.897 ± 0.098) and DL (0.871 ± 0.134). Conclusion This study proposed a novel method that integrates patient‐specific pretreatment information into DL‐based segmentation algorithm. It outperformed baseline methods, thereby improving the efficiency and segmentation accuracy in adaptive radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
11秒前
晓晓发布了新的文献求助150
16秒前
在水一方应助81299采纳,获得10
22秒前
彩虹儿应助琉忆采纳,获得10
40秒前
晓晓完成签到,获得积分10
40秒前
42秒前
CoCoco完成签到 ,获得积分10
43秒前
nito发布了新的文献求助10
44秒前
平常的三问完成签到 ,获得积分10
45秒前
45秒前
zzr发布了新的文献求助30
47秒前
81299发布了新的文献求助10
51秒前
digger2023完成签到 ,获得积分10
57秒前
81299完成签到,获得积分20
1分钟前
1分钟前
morena应助科研通管家采纳,获得30
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
思源应助畅快的涵蕾采纳,获得10
1分钟前
海派Hi完成签到 ,获得积分10
1分钟前
1分钟前
李健应助皮托采纳,获得10
1分钟前
追寻的纸鹤完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
皮托发布了新的文献求助10
2分钟前
汉堡包应助Jayden采纳,获得10
2分钟前
情怀应助Jayden采纳,获得10
2分钟前
king完成签到 ,获得积分10
2分钟前
2分钟前
Jayden发布了新的文献求助10
2分钟前
ETA完成签到,获得积分10
2分钟前
追寻完成签到 ,获得积分10
3分钟前
3分钟前
完美世界应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4917957
求助须知:如何正确求助?哪些是违规求助? 4190814
关于积分的说明 13015347
捐赠科研通 3960453
什么是DOI,文献DOI怎么找? 2171264
邀请新用户注册赠送积分活动 1189307
关于科研通互助平台的介绍 1097534