Book Recommendation Using Collaborative Filtering Algorithm

计算机科学 协同过滤 推荐系统 矩阵分解 奇异值分解 信息过载 情报检索 数据挖掘 人工智能 万维网 特征向量 物理 量子力学
作者
Esmael Ahmed,Adane Letta
出处
期刊:Applied Computational Intelligence and Soft Computing [Hindawi Limited]
卷期号:2023: 1-12 被引量:18
标识
DOI:10.1155/2023/1514801
摘要

The explosive growth in the amount of available digital information in higher education has created a potential challenge of information overload, which hampers timely access to items of interest. The recommender systems are applied in different domains such as recommendations film, tourist advising, webpages, news, songs, and products. But the recommender systems pay less attention to university library services. The most users of university library are students. These users have a lack of ability to search and select the appropriate materials from the large repository that meet for their needs. A lot of work has been done on recommender system, but there are technical gaps observed in existing works such as the problem of constant item list in using web usage mining, decision tree induction, and association rule mining. Besides, it is observed that there is cold start problem in case-based reasoning approach. Therefore, this research work presents matrix factorization collaborative filtering with some performance enhancement to overcome cold start problem. In addition, it presents a comparative study among memory-based and model-based approaches. In this study, researchers used design science research method. The study dataset, 5189 records and 76,888 ratings, was collected from the University of Gondar student information system and online catalogue system. To develop the proposed model, memory-based and model-based approaches have been tested. In memory-based approach, matrix factorization collaborative filtering with some performance enhancements has been implemented. In model-based approach, K-nearest neighbour (KNN) and singular value decomposition (SVD) algorithms are also assessed experimentally. The SVD model is trained on our dataset optimized with a scored RMSE 0.1623 compared to RMSE 0.1991 before the optimization. The RMSE for a KNN model trained using the same dataset was 1.0535. This indicates that the matrix factorization performs better than KNN models in building collaborative filtering recommenders. The proposed SVD-based model accuracy score is 85%. The accuracy score of KNN model is 53%. So, the comparative study indicates that matrix factorization technique, specifically SVD algorithm, outperforms over neighbourhood-based recommenders. Moreover, using hyperparameter tuning with SVD also has an improvement on model performance compared with the existing SVD algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡心亭完成签到 ,获得积分10
7秒前
笨笨忘幽完成签到,获得积分10
12秒前
chrom完成签到 ,获得积分10
21秒前
清爽的柚子完成签到 ,获得积分10
22秒前
糖宝完成签到 ,获得积分10
24秒前
笨笨小刺猬完成签到,获得积分10
27秒前
33秒前
小马甲应助科研通管家采纳,获得10
38秒前
salty完成签到 ,获得积分0
55秒前
Never stall完成签到 ,获得积分10
56秒前
滕皓轩完成签到 ,获得积分10
59秒前
1分钟前
呵呵贺哈完成签到 ,获得积分10
1分钟前
戈多发布了新的文献求助10
1分钟前
ycw7777完成签到,获得积分10
1分钟前
飞鱼z完成签到 ,获得积分10
1分钟前
Herbs完成签到 ,获得积分10
1分钟前
WXM完成签到 ,获得积分10
1分钟前
蓝意完成签到,获得积分0
1分钟前
1分钟前
CLTTT完成签到,获得积分10
1分钟前
Legend_完成签到 ,获得积分10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
萝卜干发布了新的文献求助10
1分钟前
闪闪的谷梦完成签到 ,获得积分10
1分钟前
guoxihan完成签到,获得积分10
1分钟前
qiaobaqiao完成签到 ,获得积分10
1分钟前
燕山堂完成签到 ,获得积分0
1分钟前
1分钟前
Young完成签到 ,获得积分10
2分钟前
2分钟前
铜豌豆完成签到 ,获得积分10
2分钟前
苏子轩完成签到 ,获得积分10
2分钟前
future完成签到 ,获得积分10
2分钟前
平常安雁完成签到 ,获得积分10
2分钟前
锋feng完成签到 ,获得积分10
2分钟前
老迟到的雪曼完成签到,获得积分10
2分钟前
2分钟前
2分钟前
LIN发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353569
求助须知:如何正确求助?哪些是违规求助? 2978155
关于积分的说明 8683992
捐赠科研通 2659598
什么是DOI,文献DOI怎么找? 1456286
科研通“疑难数据库(出版商)”最低求助积分说明 674327
邀请新用户注册赠送积分活动 665049