Book Recommendation Using Collaborative Filtering Algorithm

计算机科学 协同过滤 推荐系统 矩阵分解 奇异值分解 信息过载 情报检索 数据挖掘 人工智能 万维网 特征向量 物理 量子力学
作者
Esmael Ahmed,Adane Letta
出处
期刊:Applied Computational Intelligence and Soft Computing [Hindawi Limited]
卷期号:2023: 1-12 被引量:19
标识
DOI:10.1155/2023/1514801
摘要

The explosive growth in the amount of available digital information in higher education has created a potential challenge of information overload, which hampers timely access to items of interest. The recommender systems are applied in different domains such as recommendations film, tourist advising, webpages, news, songs, and products. But the recommender systems pay less attention to university library services. The most users of university library are students. These users have a lack of ability to search and select the appropriate materials from the large repository that meet for their needs. A lot of work has been done on recommender system, but there are technical gaps observed in existing works such as the problem of constant item list in using web usage mining, decision tree induction, and association rule mining. Besides, it is observed that there is cold start problem in case-based reasoning approach. Therefore, this research work presents matrix factorization collaborative filtering with some performance enhancement to overcome cold start problem. In addition, it presents a comparative study among memory-based and model-based approaches. In this study, researchers used design science research method. The study dataset, 5189 records and 76,888 ratings, was collected from the University of Gondar student information system and online catalogue system. To develop the proposed model, memory-based and model-based approaches have been tested. In memory-based approach, matrix factorization collaborative filtering with some performance enhancements has been implemented. In model-based approach, K-nearest neighbour (KNN) and singular value decomposition (SVD) algorithms are also assessed experimentally. The SVD model is trained on our dataset optimized with a scored RMSE 0.1623 compared to RMSE 0.1991 before the optimization. The RMSE for a KNN model trained using the same dataset was 1.0535. This indicates that the matrix factorization performs better than KNN models in building collaborative filtering recommenders. The proposed SVD-based model accuracy score is 85%. The accuracy score of KNN model is 53%. So, the comparative study indicates that matrix factorization technique, specifically SVD algorithm, outperforms over neighbourhood-based recommenders. Moreover, using hyperparameter tuning with SVD also has an improvement on model performance compared with the existing SVD algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
zxf完成签到,获得积分10
刚刚
自由的箴发布了新的文献求助10
刚刚
1秒前
我是老大应助mnbvcxz采纳,获得10
1秒前
瓜6完成签到 ,获得积分10
1秒前
xiha西希完成签到,获得积分10
1秒前
fdawsfasf关注了科研通微信公众号
1秒前
1秒前
2秒前
2秒前
狂野的友灵完成签到 ,获得积分10
3秒前
3秒前
卓卓发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
烟花应助张博采纳,获得10
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
无奈的萝完成签到,获得积分10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
玥越发布了新的文献求助20
5秒前
田様应助科研通管家采纳,获得10
5秒前
minger987完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
111完成签到,获得积分20
6秒前
八爪完成签到,获得积分10
7秒前
FFF发布了新的文献求助10
7秒前
7秒前
传奇3应助Ruby采纳,获得10
7秒前
why完成签到,获得积分10
7秒前
7秒前
小瑞发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434739
求助须知:如何正确求助?哪些是违规求助? 4547066
关于积分的说明 14205914
捐赠科研通 4467159
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439364
关于科研通互助平台的介绍 1416076