已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Book Recommendation Using Collaborative Filtering Algorithm

计算机科学 协同过滤 推荐系统 矩阵分解 奇异值分解 信息过载 情报检索 数据挖掘 人工智能 万维网 特征向量 物理 量子力学
作者
Esmael Ahmed,Adane Letta
出处
期刊:Applied Computational Intelligence and Soft Computing [Hindawi Publishing Corporation]
卷期号:2023: 1-12 被引量:19
标识
DOI:10.1155/2023/1514801
摘要

The explosive growth in the amount of available digital information in higher education has created a potential challenge of information overload, which hampers timely access to items of interest. The recommender systems are applied in different domains such as recommendations film, tourist advising, webpages, news, songs, and products. But the recommender systems pay less attention to university library services. The most users of university library are students. These users have a lack of ability to search and select the appropriate materials from the large repository that meet for their needs. A lot of work has been done on recommender system, but there are technical gaps observed in existing works such as the problem of constant item list in using web usage mining, decision tree induction, and association rule mining. Besides, it is observed that there is cold start problem in case-based reasoning approach. Therefore, this research work presents matrix factorization collaborative filtering with some performance enhancement to overcome cold start problem. In addition, it presents a comparative study among memory-based and model-based approaches. In this study, researchers used design science research method. The study dataset, 5189 records and 76,888 ratings, was collected from the University of Gondar student information system and online catalogue system. To develop the proposed model, memory-based and model-based approaches have been tested. In memory-based approach, matrix factorization collaborative filtering with some performance enhancements has been implemented. In model-based approach, K-nearest neighbour (KNN) and singular value decomposition (SVD) algorithms are also assessed experimentally. The SVD model is trained on our dataset optimized with a scored RMSE 0.1623 compared to RMSE 0.1991 before the optimization. The RMSE for a KNN model trained using the same dataset was 1.0535. This indicates that the matrix factorization performs better than KNN models in building collaborative filtering recommenders. The proposed SVD-based model accuracy score is 85%. The accuracy score of KNN model is 53%. So, the comparative study indicates that matrix factorization technique, specifically SVD algorithm, outperforms over neighbourhood-based recommenders. Moreover, using hyperparameter tuning with SVD also has an improvement on model performance compared with the existing SVD algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大神水瓶座完成签到,获得积分10
刚刚
yamo完成签到 ,获得积分10
1秒前
万能图书馆应助刘光正采纳,获得10
1秒前
1秒前
1秒前
七慕凉应助魏芸芸采纳,获得10
2秒前
默笙完成签到 ,获得积分10
3秒前
qsq完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
繁笙完成签到 ,获得积分10
6秒前
田鹤飞发布了新的文献求助10
7秒前
7秒前
小星星发布了新的文献求助10
9秒前
22222发布了新的文献求助10
10秒前
聂难敌发布了新的文献求助10
11秒前
苏姗姗发布了新的文献求助10
12秒前
guozizi发布了新的文献求助30
12秒前
14秒前
吃鲨鱼的小虾米完成签到 ,获得积分10
14秒前
徐凤年完成签到,获得积分10
16秒前
16秒前
执着的采枫完成签到 ,获得积分10
17秒前
闲得追月时完成签到,获得积分10
18秒前
19秒前
大恶魔宝拉完成签到,获得积分20
19秒前
聂难敌完成签到,获得积分10
19秒前
20秒前
20秒前
Denmark完成签到 ,获得积分10
20秒前
anan完成签到 ,获得积分10
20秒前
21秒前
TXZ06完成签到,获得积分10
21秒前
英姑应助典雅的纸飞机采纳,获得10
23秒前
23秒前
24秒前
李健应助科研通管家采纳,获得10
24秒前
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976560
求助须知:如何正确求助?哪些是违规求助? 3520659
关于积分的说明 11204287
捐赠科研通 3257271
什么是DOI,文献DOI怎么找? 1798653
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806570