Book Recommendation Using Collaborative Filtering Algorithm

计算机科学 协同过滤 推荐系统 矩阵分解 奇异值分解 信息过载 情报检索 数据挖掘 人工智能 万维网 特征向量 物理 量子力学
作者
Esmael Ahmed,Adane Letta
出处
期刊:Applied Computational Intelligence and Soft Computing [Hindawi Publishing Corporation]
卷期号:2023: 1-12 被引量:19
标识
DOI:10.1155/2023/1514801
摘要

The explosive growth in the amount of available digital information in higher education has created a potential challenge of information overload, which hampers timely access to items of interest. The recommender systems are applied in different domains such as recommendations film, tourist advising, webpages, news, songs, and products. But the recommender systems pay less attention to university library services. The most users of university library are students. These users have a lack of ability to search and select the appropriate materials from the large repository that meet for their needs. A lot of work has been done on recommender system, but there are technical gaps observed in existing works such as the problem of constant item list in using web usage mining, decision tree induction, and association rule mining. Besides, it is observed that there is cold start problem in case-based reasoning approach. Therefore, this research work presents matrix factorization collaborative filtering with some performance enhancement to overcome cold start problem. In addition, it presents a comparative study among memory-based and model-based approaches. In this study, researchers used design science research method. The study dataset, 5189 records and 76,888 ratings, was collected from the University of Gondar student information system and online catalogue system. To develop the proposed model, memory-based and model-based approaches have been tested. In memory-based approach, matrix factorization collaborative filtering with some performance enhancements has been implemented. In model-based approach, K-nearest neighbour (KNN) and singular value decomposition (SVD) algorithms are also assessed experimentally. The SVD model is trained on our dataset optimized with a scored RMSE 0.1623 compared to RMSE 0.1991 before the optimization. The RMSE for a KNN model trained using the same dataset was 1.0535. This indicates that the matrix factorization performs better than KNN models in building collaborative filtering recommenders. The proposed SVD-based model accuracy score is 85%. The accuracy score of KNN model is 53%. So, the comparative study indicates that matrix factorization technique, specifically SVD algorithm, outperforms over neighbourhood-based recommenders. Moreover, using hyperparameter tuning with SVD also has an improvement on model performance compared with the existing SVD algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joseph完成签到,获得积分10
刚刚
dypdyp应助山语采纳,获得10
2秒前
ice完成签到,获得积分10
3秒前
长木木完成签到,获得积分20
4秒前
6秒前
可爱的函函应助juwish采纳,获得10
9秒前
情怀应助向日魁采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
梅川秋裤完成签到,获得积分10
11秒前
自由千风发布了新的文献求助10
11秒前
sai完成签到,获得积分10
11秒前
11秒前
三石完成签到 ,获得积分10
11秒前
帅气男孩发布了新的文献求助10
12秒前
meng发布了新的文献求助10
13秒前
安静的难破完成签到,获得积分10
13秒前
asdasd完成签到,获得积分10
14秒前
waypeter完成签到,获得积分10
15秒前
15秒前
大宝完成签到,获得积分10
16秒前
17秒前
苗条从雪完成签到,获得积分10
17秒前
李爱国应助Albertxkcj采纳,获得10
18秒前
lyz完成签到 ,获得积分10
18秒前
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得30
19秒前
852应助科研通管家采纳,获得10
19秒前
黄油板栗应助科研通管家采纳,获得10
19秒前
黄油板栗应助科研通管家采纳,获得10
19秒前
ding应助科研通管家采纳,获得10
19秒前
19秒前
米尔的猫应助科研通管家采纳,获得20
19秒前
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
CodeCraft应助HelloKun采纳,获得10
20秒前
vvvv完成签到,获得积分10
20秒前
大模型应助微笑的桐采纳,获得10
21秒前
Emily完成签到,获得积分10
21秒前
单薄傲易发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969782
求助须知:如何正确求助?哪些是违规求助? 3514601
关于积分的说明 11174816
捐赠科研通 3249899
什么是DOI,文献DOI怎么找? 1795080
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804886