材料科学
微观结构
共晶体系
合金
压痕硬度
冶金
高熵合金
作者
Guangpei Lin,Zhaobing Cai,Yinghui Dong,Chongmei Wang,Dora Juan Juan Hu,Po Zhang,Le Gu
标识
DOI:10.1016/j.matchar.2024.113830
摘要
In this work, the high-temperature oxidation behavior at 820 °C of an AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) prepared by vacuum induction melting was studied, while the evolution of microstructure and microhardness at different oxidation times (1 h, 3 h, 5 h, 10 h, 20 h, 30 h, and 50 h) were also investigated. The prepared AlCoCrFeNi2.1 EHEA shows a typical FCC/BCC bi-phase microstructure with Cr-rich precipitation phase. Compared to 304 stainless steels, the AlCrCoFeNi2.1 EHEA exhibits a better oxidation resistance, which is due to the continuous and dense Al2O3 generated during high-temperature oxidation process. The AlCoCrFeNi2.1 EHEA also has an excellent high-temperature structure stability, proved by that the phase composition and elemental composition of each phase remain almost unchanged with the increase in oxidation time. After high-temperature oxidation, the microhardness of AlCoCrFeNi2.1 EHEA decreases as expected, however, with the increase in oxidation time, the microhardness shows a noticeable increasing trend due to the solid solution strengthening of the σ phase and formation of the α-Cr phase.
科研通智能强力驱动
Strongly Powered by AbleSci AI