PNG-Stega: Progressive Non-Autoregressive Generative Linguistic Steganography

隐写分析技术 计算机科学 隐写术 人工智能 背景(考古学) 自回归模型 自然语言处理 理论计算机科学 嵌入 数学 统计 生物 古生物学
作者
Rong Wang,Lingyun Xiang,Yangfan Liu,Ching-Nung Yang
出处
期刊:IEEE Signal Processing Letters [Institute of Electrical and Electronics Engineers]
卷期号:30: 528-532
标识
DOI:10.1109/lsp.2023.3272798
摘要

The autoregressive-based model with the left-to-right generation order has been a predominant paradigm for generative linguistic steganography. However, such steganography does not perform well on semantic control and content planning, which is forced by the secret message during the generation process. To mitigate this issue and efficiently produce high-quality steganographic texts (stegotexts), we present a P rogressive N on-autoregressive G enerative linguistic Stega nography (PNG-Stega), which encodes secret messages and extends the context to generate stegotexts in a multi-round insertion manner. Each round continuously refines the generated steganographic sequences on the premise of the global information of the previous round, while striving to decline the adverse effects of steganographic encoding on text quality. Moreover, for enhancing the semantic internal dependency of stegotexts, we utilize a constraint word sequences extraction scheme to obtain keywords to initialize the skeleton of targeted stegotexts, then expand the existing keywords with insertion operations. Experimental results demonstrate that PNG-Stega outperforms compared methods in terms of imperceptibility and anti-steganalysis ability. In particular, PNG-Stega provides high information hiding efficiency, even exceeding the autoregressive methods by around 2 times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尘南浔完成签到 ,获得积分10
刚刚
月亮明星完成签到,获得积分10
刚刚
Jasper应助einuo采纳,获得10
1秒前
1秒前
2秒前
科研小bai完成签到,获得积分10
2秒前
深情安青应助韭菜盒子采纳,获得10
2秒前
2秒前
Akim应助科研小白采纳,获得10
3秒前
Eric完成签到,获得积分10
3秒前
3秒前
Keep完成签到,获得积分20
3秒前
坚定的诗双完成签到,获得积分10
3秒前
耍酷激光豆完成签到,获得积分10
3秒前
thousandlong完成签到,获得积分10
4秒前
充电宝应助Maestro_S采纳,获得10
4秒前
4秒前
4秒前
dusai完成签到,获得积分10
4秒前
棟仔超人发布了新的文献求助10
4秒前
4秒前
5秒前
派大星和海绵宝宝完成签到,获得积分10
5秒前
HYLynn完成签到,获得积分10
6秒前
赘婿应助芋泥螺蛳猫采纳,获得10
7秒前
renjiu完成签到,获得积分10
7秒前
7秒前
rrr完成签到,获得积分10
7秒前
JACK完成签到,获得积分10
8秒前
科研欣路完成签到,获得积分10
8秒前
勿庸完成签到,获得积分10
8秒前
8秒前
王乐多完成签到 ,获得积分10
8秒前
锅里有两条鱼完成签到 ,获得积分10
8秒前
9秒前
姚断天发布了新的文献求助10
9秒前
CBY发布了新的文献求助10
9秒前
庞洋发布了新的文献求助10
9秒前
9秒前
hetao286发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740