A Novel Coal Dust Characteristic Extraction to Enable Particle Size Analysis

粒径 萃取(化学) 煤尘 材料科学 粒子(生态学) 计算机科学 环境科学 工程类 废物管理 地质学 化学 海洋学 色谱法 化学工程
作者
Zheng Wang,Dongyan Li,Xu Zheng,Dingding Xie
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:6
标识
DOI:10.1109/tim.2021.3113127
摘要

Coal particle characteristic extraction is essential to prevent dust explosions. It is traditionally analyzed by manual screening, which is relatively time-consuming and cannot automatically capture outlining. To address this issue, an accurate and automatic particle image segmentation method is highly demanded in the smart mine. Thus, a novel characteristic learning approach which applied simplified VGGNet as a back-bone network is investigated to learn the feature details of particle image sample. The sample set includes 3000 dust images captured from coal preparation plants. First, hierarchical features are extracted step by step on the improved VGGNet. Meanwhile, the feature maps obtained via convolution are sent to the dual attention mechanism module to determine the global feature weights, and the particle characteristic information is optimized. Afterwards, an erosion-dilation module is applied to achieve dense texture separation in the deep feature map. Finally, the particles are segmented by upsampling on unpooling. The experimental results show that the proposed method achieves better precision, recall and F1 with 0.8743, 0.8351, 0.8543, respectively than other previous methods. Compared with laser diffractometry, the maximum error ε is 5.115% in the range of R≤75 μm, and this is consistent with the expected. The proposed method outperformed other state-of-the-arts on the segmentation results and can be applied in coal dust detection for enterprise as a viable alternative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
眼睛大的金鱼完成签到,获得积分10
刚刚
CipherSage应助不对也没错采纳,获得10
1秒前
曹梦梦发布了新的文献求助10
2秒前
JayWu完成签到,获得积分10
2秒前
2秒前
小马甲应助BaiX采纳,获得10
2秒前
大工梧桐发布了新的文献求助10
2秒前
香蕉君达完成签到,获得积分10
2秒前
3秒前
小马甲应助愉快的定帮采纳,获得10
3秒前
科目三应助自由刺猬采纳,获得20
4秒前
futing完成签到,获得积分10
4秒前
老鼠爱吃fish完成签到,获得积分10
4秒前
xiaoou完成签到,获得积分10
4秒前
科研通AI2S应助VDC采纳,获得10
5秒前
5秒前
胡天萌完成签到 ,获得积分10
5秒前
正义的小怪兽完成签到,获得积分20
5秒前
wanci应助刘星星采纳,获得10
5秒前
完美世界应助jekyll采纳,获得10
6秒前
自然怀梦完成签到,获得积分10
6秒前
6秒前
neo完成签到,获得积分10
7秒前
完美世界应助lyn采纳,获得30
7秒前
情怀应助Jackcaosky采纳,获得200
7秒前
123发布了新的文献求助10
7秒前
buno应助hhh采纳,获得10
8秒前
SYLH应助wltwb采纳,获得10
8秒前
Rui发布了新的文献求助10
8秒前
斯文败类应助快乐小文采纳,获得30
8秒前
10秒前
尹天扬完成签到,获得积分10
11秒前
11秒前
大方大船完成签到,获得积分10
12秒前
Sigyn完成签到,获得积分10
12秒前
顺利琦发布了新的文献求助10
12秒前
12秒前
自由完成签到,获得积分20
13秒前
Volta_zz完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678