Reinforcement Learning for Test Case Prioritization

计算机科学 强化学习 优先次序 考试(生物学) 人工智能 钢筋 机器学习 人机交互 管理科学 工程类 结构工程 生物 古生物学
作者
Mojtaba Bagherzadeh,Nafıseh Kahani,Lionel Briand
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:48 (8): 2836-2856 被引量:63
标识
DOI:10.1109/tse.2021.3070549
摘要

Continuous Integration (CI) significantly reduces integration problems, speeds up development time, and shortens release time. However, it also introduces new challenges for quality assurance activities, including regression testing, which is the focus of this work. Though various approaches for test case prioritization have shown to be very promising in the context of regression testing, specific techniques must be designed to deal with the dynamic nature and timing constraints of CI. Recently, Reinforcement Learning (RL) has shown great potential in various challenging scenarios that require continuous adaptation, such as game playing, real-time ads bidding, and recommender systems. Inspired by this line of work and building on initial efforts in supporting test case prioritization with RL techniques, we perform here a comprehensive investigation of RL-based test case prioritization in a CI context. To this end, taking test case prioritization as a ranking problem, we model the sequential interactions between the CI environment and a test case prioritization agent as an RL problem, using three alternative ranking models. We then rely on carefully selected and tailored state-of-the-art RL techniques to automatically and continuously learn a test case prioritization strategy, whose objective is to be as close as possible to the optimal one. Our extensive experimental analysis shows that the best RL solutions provide a significant accuracy improvement over previous RL-based work, with prioritization strategies getting close to being optimal, thus paving the way for using RL to prioritize test cases in a CI context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
壹哈发布了新的文献求助10
1秒前
007完成签到 ,获得积分10
1秒前
1秒前
Aurora发布了新的文献求助10
1秒前
bkagyin应助橙汁采纳,获得10
1秒前
桐桐应助easy采纳,获得10
3秒前
满眼星辰发布了新的文献求助10
3秒前
aaaaarfv发布了新的文献求助10
3秒前
yin应助甜甜的小土豆采纳,获得10
4秒前
4秒前
4秒前
Yy发布了新的文献求助10
4秒前
阿莫西林皮蛋完成签到,获得积分10
4秒前
爆米花应助王小花采纳,获得10
5秒前
西红柿关注了科研通微信公众号
7秒前
lllllc完成签到,获得积分10
8秒前
ststxq完成签到,获得积分10
8秒前
8秒前
平安喜乐发布了新的文献求助10
8秒前
yin应助Kenny采纳,获得10
9秒前
9秒前
10秒前
传奇3应助甜甜的小土豆采纳,获得10
10秒前
李爱国应助张雯雯采纳,获得10
11秒前
11秒前
Liangstar发布了新的文献求助20
12秒前
大模型应助知夏采纳,获得10
12秒前
12秒前
三愿完成签到,获得积分10
12秒前
13秒前
13秒前
15秒前
汪jy发布了新的文献求助10
15秒前
酷波er应助dddhp采纳,获得10
15秒前
天天快乐应助光亮的傲白采纳,获得10
15秒前
15秒前
CHINA_C13发布了新的文献求助10
16秒前
zzz完成签到,获得积分20
16秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470685
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9084950
捐赠科研通 2754196
什么是DOI,文献DOI怎么找? 1511311
邀请新用户注册赠送积分活动 698363
科研通“疑难数据库(出版商)”最低求助积分说明 698253