生物传感器
材料科学
纳米材料
石墨烯
纳米技术
纳米材料基催化剂
生物芯片
纳米颗粒
作者
Yuzhen Huang,Yingkuan Han,Jiayang Sun,Yu Zhang,Lin Han
标识
DOI:10.1016/j.mtchem.2022.100895
摘要
Non-enzymatic biosensors based on various nanomaterials with large surface-volume ratios and high catalytic efficiencies have been proposed to compensate for the non-stability and high cost of enzymatic biosensors. However, the construction of a stable, highly sensitive, flexible, three-dimensional (3D), microstructured, non-enzymatic biosensor integrated with a smartphone-based portable system has been challenging. Herein, highly conductive laser-induced graphene (LIG) array with a honeycomb-like 3D microstructure co-decorated with copper(I) oxide and gold nanocatalysts was developed via simple and green electro-deposition and chemical reduction approaches for a miniaturized electrochemical flexible non-enzymatic biosensor. SEM, XRD, Raman and XPS analyzations indicated that the Cu2O and Au nanocatalysts co-decorated three-dimensional, laser-induced graphene hybrid nanomaterials were developed successfully. The signal of the biosensor was improved by more than 10 fold compared to the LIG alone due to the co-decorated with copper(I) oxide and gold nanocatalysts. The fabricated electrochemical biochip was integrated with a smartphone-based microstation for glucose monitoring, presenting a larger linear interval of 1–20 mM with an excellent sensitivity of 236 μA/mM/cm2 and a relatively low detection limit of 0.31 μM. Noticeably, the biochip could measure blood sugar on curved surfaces and still deliver stable sensing signals after being bent back-and-forth 25 times. The novel biosensor is a potentially valuable flexible electronic device. The hybrid nanomaterials developed in this work may be applicable to other biosensing, catalytic, and energy devices (supercapacitors and batteries).
科研通智能强力驱动
Strongly Powered by AbleSci AI