可解释性
稳健性(进化)
计算机科学
人工智能
域适应
机器学习
确定性
背景(考古学)
深度学习
图像(数学)
支持向量机
上下文图像分类
模式识别(心理学)
数据挖掘
计算机视觉
人工神经网络
卷积神经网络
医学影像学
分类器(UML)
数学
几何学
化学
古生物学
基因
生物
生物化学
作者
Ali Mansour,Aurélien Olivier,Clément Hoffman,Luc Bressollette,Benoı̂t Clément
标识
DOI:10.1109/cisp-bmei53629.2021.9624442
摘要
This paper presents a selective survey on recent advances in machine learning applied to medical imaging. It aims to highlight both innovations that increase the performance of the models and methods that ensure certainty, interpretability and robustness of the trained models. The paper focuses particularly on new concepts such as attention modules that allow to gather specific features considering global context. Its second main focus is given to domain adaptation methods to enhance model robustness to distribution shifts. Finally, we discuss uncertainty estimation and interpretability methods to evaluate confidence in a trained model.
科研通智能强力驱动
Strongly Powered by AbleSci AI