On-chip dielectrophoretic device for cancer cell manipulation: A numerical and artificial neural network study

微通道 微流控 人工神经网络 体积流量 炸薯条 电压 计算机科学 实验室晶片 材料科学 乳腺癌 生物系统 人工智能 癌症 生物医学工程 电子工程 纳米技术 机械 电气工程 工程类 物理 医学 电信 内科学 生物
作者
Rasool Mohammadi,Hadi Afsaneh,Behnam Rezaei,Mahdi Moghimi Zand
出处
期刊:Biomicrofluidics [American Institute of Physics]
卷期号:17 (2)
标识
DOI:10.1063/5.0131806
摘要

Breast cancer, as one of the most frequent types of cancer in women, imposes large financial and human losses annually. MCF-7, a well-known cell line isolated from the breast tissue of cancer patients, is usually used in breast cancer research. Microfluidics is a newly established technique that provides many benefits, such as sample volume reduction, high-resolution operations, and multiple parallel analyses for various cell studies. This numerical study presents a novel microfluidic chip for the separation of MCF-7 cells from other blood cells, considering the effect of dielectrophoretic force. An artificial neural network, a novel tool for pattern recognition and data prediction, is implemented in this research. To prevent hyperthermia in cells, the temperature should not exceed 35 °C. In the first part, the effect of flow rate and applied voltage on the separation time, focusing efficiency, and maximum temperature of the field is investigated. The results denote that the separation time is affected by both the input parameters inversely, whereas the two remaining parameters increase with the input voltage and decrease with the sheath flow rate. A maximum focusing efficiency of 81% is achieved with a purity of 100% for a flow rate of 0.2μL/min and a voltage of 3.1V . In the second part, an artificial neural network model is established to predict the maximum temperature inside the separation microchannel with a relative error of less than 3% for a wide range of input parameters. Therefore, the suggested label-free lab-on-a-chip device separates the target cells with high-throughput and low voltages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuan完成签到,获得积分10
刚刚
MG完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
英姑应助研友_rLmNXn采纳,获得10
3秒前
5秒前
fengxi发布了新的文献求助10
6秒前
6秒前
壹号发布了新的文献求助10
6秒前
6秒前
西屿清潺发布了新的文献求助10
6秒前
Lucas应助meylife采纳,获得10
6秒前
楠薏发布了新的文献求助10
9秒前
9秒前
spirit发布了新的文献求助10
9秒前
务实的紫伊完成签到,获得积分10
10秒前
xiumei1998完成签到,获得积分10
11秒前
zhentg完成签到,获得积分10
11秒前
从容藏今完成签到 ,获得积分10
11秒前
赘婿应助晴时有风采纳,获得10
12秒前
科研通AI5应助barry采纳,获得10
12秒前
没有昵称完成签到,获得积分10
12秒前
壹号完成签到,获得积分10
13秒前
格格星发布了新的文献求助10
13秒前
14秒前
小郭完成签到,获得积分10
15秒前
36456657应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
SICHEN应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得30
16秒前
fengxi完成签到,获得积分10
17秒前
orixero应助中级中级采纳,获得10
18秒前
Zyq发布了新的文献求助10
18秒前
漠池完成签到,获得积分10
18秒前
lzm完成签到,获得积分10
19秒前
Xyan发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557621
求助须知:如何正确求助?哪些是违规求助? 3132674
关于积分的说明 9398679
捐赠科研通 2832882
什么是DOI,文献DOI怎么找? 1557088
邀请新用户注册赠送积分活动 727082
科研通“疑难数据库(出版商)”最低求助积分说明 716184