材料科学
灵活性(工程)
纳米技术
聚合物
功能性聚合物
三元运算
合理设计
图层(电子)
聚合
计算机科学
复合材料
统计
数学
程序设计语言
作者
Lu Zhang,Zhigang Yao,Hanyu Wang,Jian Zhang,Xiaoling Ma,Fujun Zhang
出处
期刊:Solar RRL
[Wiley]
日期:2023-04-25
卷期号:7 (12)
被引量:21
标识
DOI:10.1002/solr.202300219
摘要
All polymer solar cells (APSCs) composed of polymeric donors and acceptors have attracted tremendous attention due to their unique merits of mechanical flexibility and good film formation property, which exhibit promising applications on wearable and flexible stretchable devices. Over 18% power conversion efficiency of APSCs has been achieved benefiting from the continuous development of functional layer materials innovation and device engineering evolution. In this review, the functional layer materials that enabled the recent progress of efficient APSCs are outlined, including typical polymer donors, emerging polymer acceptors based on polymerizing small molecule acceptors strategy, interfacial materials as well as the rational design rules for corresponding functional materials. From the perspective of device engineering evolution, the film deposition and treatment techniques are introduced, which play a vital role in manipulating film morphology through properly tuning the vertical component distribution and aggregation behavior of polymers. Meanwhile, the ternary strategy is also discussed as an effective method in promoting mechanical durability, stability, and thickness‐insensitive characteristics of APSCs facing for future applications. The challenges and outlooks on this filed are finally proposed for developing high‐performance APSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI