Sufficient reliability of the behavioral and computational readouts of a probabilistic reversal learning task

可靠性(半导体) 计算机科学 水准点(测量) 任务(项目管理) 神经认知 概率逻辑 人工智能 先验概率 机器学习 灵活性(工程) 一致性(知识库) 认知 心理学 贝叶斯概率 统计 数学 功率(物理) 神经科学 经济 物理 管理 地理 量子力学 大地测量学
作者
Maria Waltmann,Florian Schlagenhauf,Lorenz Deserno
出处
期刊:Behavior Research Methods [Springer Nature]
卷期号:54 (6): 2993-3014 被引量:45
标识
DOI:10.3758/s13428-021-01739-7
摘要

Task-based measures that capture neurocognitive processes can help bridge the gap between brain and behavior. To transfer tasks to clinical application, reliability is a crucial benchmark because it imposes an upper bound to potential correlations with other variables (e.g., symptom or brain data). However, the reliability of many task readouts is low. In this study, we scrutinized the retest reliability of a probabilistic reversal learning task (PRLT) that is frequently used to characterize cognitive flexibility in psychiatric populations. We analyzed data from N = 40 healthy subjects, who completed the PRLT twice. We focused on how individual metrics are derived, i.e., whether data were partially pooled across participants and whether priors were used to inform estimates. We compared the reliability of the resulting indices across sessions, as well as the internal consistency of a selection of indices. We found good to excellent reliability for behavioral indices as derived from mixed-effects models that included data from both sessions. The internal consistency was good to excellent. For indices derived from computational modeling, we found excellent reliability when using hierarchical estimation with empirical priors and including data from both sessions. Our results indicate that the PRLT is well equipped to measure individual differences in cognitive flexibility in reinforcement learning. However, this depends heavily on hierarchical modeling of the longitudinal data (whether sessions are modeled separately or jointly), on estimation methods, and on the combination of parameters included in computational models. We discuss implications for the applicability of PRLT indices in psychiatric research and as diagnostic tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dddd关注了科研通微信公众号
刚刚
1秒前
小丸子发布了新的文献求助10
1秒前
1秒前
2秒前
liuke完成签到,获得积分10
2秒前
脑洞疼应助科研小白采纳,获得10
2秒前
zjx0925完成签到,获得积分10
3秒前
科研通AI2S应助ning采纳,获得10
3秒前
4秒前
ding应助冉冉采纳,获得10
4秒前
陈cc发布了新的文献求助10
4秒前
我测你码发布了新的文献求助10
5秒前
hxj完成签到,获得积分20
5秒前
6秒前
充电宝应助kuroyi采纳,获得10
6秒前
小蚊子发布了新的文献求助10
7秒前
小二郎应助zjx0925采纳,获得10
7秒前
8秒前
8秒前
9秒前
9秒前
10秒前
YNHN发布了新的文献求助10
10秒前
Owen应助蛋挞采纳,获得10
11秒前
共享精神应助hxj采纳,获得10
11秒前
hbjadekylin发布了新的文献求助10
11秒前
科研通AI5应助mixieer采纳,获得10
11秒前
桐桐应助88采纳,获得10
11秒前
12秒前
12秒前
12秒前
麦克斯韦的小妖完成签到 ,获得积分10
12秒前
12秒前
13秒前
Liar发布了新的文献求助10
13秒前
我测你码完成签到,获得积分10
13秒前
加菲丰丰应助123的小王子采纳,获得30
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331