惯性测量装置
航位推算
里程计
计算机视觉
人工智能
计算机科学
背景(考古学)
卡尔曼滤波器
扩展卡尔曼滤波器
噪音(视频)
方向(向量空间)
全球定位系统
机器人
地理
移动机器人
数学
电信
图像(数学)
考古
几何学
作者
Martin Brossard,Axel Barrau,Silvère Bonnabel
出处
期刊:IEEE transactions on intelligent vehicles
[Institute of Electrical and Electronics Engineers]
日期:2020-12-01
卷期号:5 (4): 585-595
被引量:152
标识
DOI:10.1109/tiv.2020.2980758
摘要
In this paper, we propose a novel accurate method for dead-reckoning of wheeled vehicles based only on an Inertial Measurement Unit (IMU). In the context of intelligent vehicles, robust and accurate dead-reckoning based on the IMU may prove useful to correlate feeds from imaging sensors, to safely navigate through obstructions, or for safe emergency stops in the extreme case of exteroceptive sensors failure. The key components of the method are the Kalman filter and the use of deep neural networks to dynamically adapt the noise parameters of the filter. The method is tested on the KITTI odometry dataset, and our dead-reckoning inertial method based only on the IMU accurately estimates 3D position, velocity, orientation of the vehicle and self-calibrates the IMU biases. We achieve on average a 1.10% translational error and the algorithm competes with top-ranked methods which, by contrast, use LiDAR or stereo vision.
科研通智能强力驱动
Strongly Powered by AbleSci AI