Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O

化学 甲醇 催化作用 格式化 甲酸甲酯 反应机理 二聚体 转移加氢 组合化学 有机化学
作者
Ya‐Fan Zhao,Yong Yang,Charles A. Mims,Charles H. F. Peden,Jun Li,Donghai Mei
出处
期刊:Journal of Catalysis [Elsevier]
卷期号:281 (2): 199-211 被引量:375
标识
DOI:10.1016/j.jcat.2011.04.012
摘要

Methanol synthesis from CO2 hydrogenation on supported Cu catalysts is of considerable importance in the chemical and energy industries. Although extensive experimental and theoretical efforts have been carried out in the past decades, the most fundamental questions such as the reaction mechanisms and the key reaction intermediates are still in debate. In the present work, a comprehensive reaction network for CO2 hydrogenation to methanol on Cu(1 1 1) is studied using periodic density functional theory calculations. All of the elementary reaction steps in the reaction network are identified in an unbiased way with the dimer method. Our calculation results show that methanol synthesis from direct hydrogenation of formate on Cu(1 1 1) is not feasible due to the high activation barriers for some of the elementary steps. Instead, we find that CO2 hydrogenation to hydrocarboxyl (trans-COOH) is kinetically more favorable than formate in the presence of H2O via a unique hydrogen transfer mechanism. The trans-COOH is then converted into hydroxymethylidyne (COH) via dihydroxycarbene (COHOH) intermediates, followed by three consecutive hydrogenation steps to form hydroxymethylene (HCOH), hydroxymethyl (H2COH), and methanol. This is consistent with recent experimental observations [1], which indicate that direct hydrogenation of formate will not produce methanol under dry hydrogen conditions. Thus, both experiment and computational modeling clearly demonstrate the important role of trace amounts of water in methanol synthesis from CO2 hydrogenation on Cu catalysts. The proposed methanol synthesis route on Cu(1 1 1) not only provides new insights into methanol synthesis chemistry, but also demonstrates again that spectroscopically observed surface species are often not critical reaction intermediates but rather spectator species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
现代绮玉发布了新的文献求助10
2秒前
调皮的志泽完成签到,获得积分20
2秒前
领导范儿应助小西米采纳,获得10
3秒前
Owen应助小王采纳,获得10
3秒前
花花发布了新的文献求助30
3秒前
FWDH完成签到,获得积分10
4秒前
zhengguibin完成签到 ,获得积分10
4秒前
刘大年发布了新的文献求助10
4秒前
5秒前
ddaikk发布了新的文献求助10
5秒前
科研通AI2S应助舒心的雨双采纳,获得10
5秒前
5秒前
7秒前
Yuying完成签到 ,获得积分10
8秒前
wangsiyuan发布了新的文献求助10
10秒前
第三完成签到,获得积分10
10秒前
桐桐应助大白采纳,获得10
11秒前
11秒前
aaa发布了新的文献求助10
11秒前
FashionBoy应助宇文山柏采纳,获得10
12秒前
12秒前
FWDH发布了新的文献求助10
13秒前
小屁孩发布了新的文献求助10
13秒前
SciGPT应助ei123采纳,获得20
14秒前
苦我心志完成签到,获得积分10
15秒前
星辰大海应助乐观宛海采纳,获得10
15秒前
16秒前
16秒前
坚强不言完成签到,获得积分10
16秒前
科目三应助杨e采纳,获得10
16秒前
chen1发布了新的文献求助10
16秒前
风起青禾完成签到,获得积分10
16秒前
今后应助调皮的志泽采纳,获得10
17秒前
何以发布了新的文献求助10
19秒前
李爱国应助宣依云采纳,获得10
20秒前
英俊的冥完成签到,获得积分10
20秒前
爱静静应助啦啦啦采纳,获得10
22秒前
LLL驳回了烟花应助
22秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149540
求助须知:如何正确求助?哪些是违规求助? 2800615
关于积分的说明 7840805
捐赠科研通 2458144
什么是DOI,文献DOI怎么找? 1308295
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706