Fabrication of visible-light responsive TiO2@C photocatalyst with an ultra-thin carbon layer to efficiently degrade organic pollutants

光催化 材料科学 可见光谱 涂层 二氧化钛 带隙 化学工程 光化学 纳米技术 光电子学 催化作用 复合材料 化学 有机化学 工程类
作者
Xin Gao,Penggang Ren,Jin Wang,Fang Ren,Zhong Dai,Yanling Jin
出处
期刊:Applied Surface Science [Elsevier]
卷期号:532: 147482-147482 被引量:47
标识
DOI:10.1016/j.apsusc.2020.147482
摘要

Titanium dioxide (TiO2) is considered a promising photocatalyst due to its remarkable properties, such as photostability, low energy consumption and non-toxicity. However, some intrinsic drawbacks of TiO2 including high band gap energy and easy recombination of electron-hole pairs seriously hinder its practical application in photocatalysis. In this study, a 1-nm-thick carbon coating layer was introduced onto the surface of TiO2 (TiO2@C) by carbonizing kraft lignin to improve the photocatalytic performance. Compared with TiO2, TiO2@C shows absorption in both visible-light and UV-light regions, a decrease in band gap energy from 3.31 to 3.27 eV and excellent electronic conductivity, which favour the generation and separation of photo-generated carriers. In addition, the ultra-thin carbon coating can guarantee the penetration of sunlight, and TiO2@C, which remains afloat on the water, can contact with wastewater and absorb sufficient sunlight due to the hydrophobicity and loose structure. The investigation of photocatalytic degradation towards methylene blue (MB) and tetracycline (TC) under artificial visible-light irradiation demonstrates that the prepared TiO2@C has relatively superior photocatalytic activity. The absorbed MB and TC are almost completely degraded by TiO2@C within 10 min and 35 min, respectively. Given the simple modification and excellent photocatalysis, the prepared TiO2@C exhibits great potential applications in contaminated water treatment. This study provides a feasible carbon-coating strategy to improve the photocatalytic performance of TiO2, which can be extended to the rational design of other photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
念你惊鸿影完成签到,获得积分10
刚刚
刚刚
kakafan发布了新的文献求助10
1秒前
wen发布了新的文献求助10
1秒前
畅快不平发布了新的文献求助10
1秒前
1秒前
天真纹完成签到,获得积分10
2秒前
3秒前
3秒前
大红是活宝呢完成签到,获得积分10
3秒前
YQS发布了新的文献求助10
4秒前
4秒前
1233完成签到,获得积分10
4秒前
5秒前
5秒前
mufeixue完成签到,获得积分10
5秒前
Shawn发布了新的文献求助10
6秒前
科研通AI2S应助微笑的鱼采纳,获得10
6秒前
神马研通完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
kakafan完成签到,获得积分10
7秒前
9秒前
linovn完成签到,获得积分10
9秒前
9秒前
SciGPT应助NDoki采纳,获得10
9秒前
123发布了新的文献求助10
10秒前
LMFY222发布了新的文献求助10
11秒前
天天快乐发布了新的文献求助10
11秒前
www发布了新的文献求助10
11秒前
fhdgwmyx完成签到,获得积分10
12秒前
11完成签到 ,获得积分20
12秒前
12秒前
情怀应助自然有手就行采纳,获得10
13秒前
Lanmeiwei发布了新的文献求助10
14秒前
今后应助负责的小蘑菇采纳,获得10
15秒前
15秒前
16秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135943
求助须知:如何正确求助?哪些是违规求助? 2786734
关于积分的说明 7779353
捐赠科研通 2442999
什么是DOI,文献DOI怎么找? 1298768
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870