亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: a review

生态生理学 固碳 化学 生态学
作者
Signe Koch Klavsen,Tom Vindbæk Madsen,Stephen C. Maberly
出处
期刊:Photosynthesis Research [Springer Nature]
卷期号:109 (1): 269-279 被引量:33
标识
DOI:10.1007/s11120-011-9630-8
摘要

Inorganic carbon can be in short supply in freshwater relative to that needed by freshwater plants for photosynthesis because of a large external transport limitation coupled with frequent depleted concentrations of CO(2) and elevated concentrations of O(2). Freshwater plants have evolved a host of avoidance, exploitation and amelioration strategies to cope with the low and variable supply of inorganic carbon in water. Avoidance strategies rely on the spatial variation in CO(2) concentrations within and among lakes. Exploitation strategies involve anatomical and morphological features that take advantage of sources of CO(2) outside of the water column such as the atmosphere or sediment. Amelioration strategies involve carbon-concentrating mechanisms based on uptake of bicarbonate, which is widespread, C(4)-fixation, which is infrequent, and crassulacean acid metabolism (CAM), which is of intermediate frequency. CAM enables aquatic plants to take up inorganic carbon in the night. Furthermore, daytime inorganic carbon uptake is generally not inhibited and therefore CAM is considered to be a carbon-conserving mechanism. CAM in aquatic plants is a plastic mechanism regulated by environmental variables and is generally downregulated when inorganic carbon does not limit photosynthesis. CAM is regulated in the long term (acclimation during growth), but is also affected by environmental conditions in the short term (response on a daily basis). In aquatic plants, CAM appears to be an ecologically important mechanism for increasing inorganic carbon uptake, because the in situ contribution from CAM to the C-budget generally is high (18-55%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傅飞风完成签到,获得积分10
1秒前
1秒前
傅飞风发布了新的文献求助10
4秒前
LucienS发布了新的文献求助10
4秒前
5秒前
5秒前
8秒前
江江发布了新的文献求助10
9秒前
乐观大开发布了新的文献求助10
10秒前
12秒前
cy完成签到,获得积分10
15秒前
愿不负丶完成签到,获得积分10
17秒前
Linson发布了新的文献求助10
18秒前
cy发布了新的文献求助10
20秒前
乐观大开完成签到 ,获得积分20
20秒前
Linson完成签到,获得积分10
31秒前
小蘑菇应助cy采纳,获得10
32秒前
江江发布了新的文献求助10
36秒前
领导范儿应助乐观大开采纳,获得10
39秒前
22发布了新的文献求助10
51秒前
51秒前
LucienS完成签到,获得积分10
54秒前
Rwslpy完成签到 ,获得积分10
55秒前
害羞龙猫完成签到 ,获得积分10
55秒前
JamesPei应助22采纳,获得10
1分钟前
白白完成签到 ,获得积分10
1分钟前
Zed完成签到,获得积分20
1分钟前
睡一天懒觉完成签到,获得积分10
1分钟前
22完成签到,获得积分20
1分钟前
风格化蛋糕完成签到,获得积分20
1分钟前
ding应助单薄的金鱼采纳,获得10
1分钟前
miujin应助Yesaniar采纳,获得10
1分钟前
上善若水完成签到 ,获得积分10
1分钟前
阿烨完成签到,获得积分10
1分钟前
小靳完成签到,获得积分10
1分钟前
图图完成签到 ,获得积分10
1分钟前
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526437
求助须知:如何正确求助?哪些是违规求助? 3106899
关于积分的说明 9281822
捐赠科研通 2804409
什么是DOI,文献DOI怎么找? 1539435
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709546