Incentive-Aware Autonomous Client Participation in Federated Learning

计算机科学 激励 方案(数学) 波动性(金融) 互联网隐私 业务 微观经济学 财务 经济 数学 数学分析
作者
Miao Hu,Di Wu,Yipeng Zhou,Xu Chen,Min Chen
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 2612-2627 被引量:21
标识
DOI:10.1109/tpds.2022.3148113
摘要

Federated learning (FL) emerges as a promising paradigm to enable a federation of clients to train a machine learning model in a privacy-preserving manner. Most existing works assumed that the central parameter server (PS) determines the participation of clients implying that clients cannot make autonomous participation decisions. The above assumption is unrealistic because the participation in FL training may incur various cost and clients also have strong desire to be rewarded for participation. To address this problem, we design a novel autonomous client participation scheme to incentivize clients. Specifically, the PS provides a certain reward shared among participating clients for each training round. Clients decide whether to participate each FL training round or not based on their own utilities (i.e., reward minus cost). The process can be modeled as a minority game (MG) with incomplete information and clients end up in the minority side win after each training round because the reward of each participating client may not cover its cost if too many clients participate and vice verse. The challenge of autonomous participation schemes lies in lowering the volatility of participating clients in each round due to the lack of coordination among clients. Through solid analysis, we prove that: 1) The volatility of participating clients in each round is very high under the standard MG scheme. 2) The volatility of participating clients can be reduced significantly under the stochastic MG scheme. 3) A coalition based MG is proposed, which can further reduce the volatility in each round. By conducting extensive experiments in real settings, we demonstrate that the stochastic MG-based scheme outperforms other state-of-the-art algorithms in terms of utility and volatility, and the coalition MG-based client participation scheme can further boost the utility by 39%-48% and reduce the volatility by 51%–100%. Moreover, our algorithms can achieve almost the same model accuracy as that obtained by centralized client participation algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cocolu应助sss采纳,获得10
1秒前
1秒前
yxy发布了新的文献求助10
2秒前
XiaoM发布了新的文献求助30
2秒前
汉堡包应助Hk采纳,获得10
2秒前
Lucas应助ylp0813采纳,获得10
3秒前
Tyche发布了新的文献求助10
3秒前
Lee发布了新的文献求助10
3秒前
EYU完成签到,获得积分10
3秒前
拼搏老九发布了新的文献求助10
3秒前
马小懂完成签到,获得积分10
4秒前
4秒前
4秒前
芷琪发布了新的文献求助10
4秒前
camusmus完成签到,获得积分10
4秒前
long完成签到 ,获得积分10
6秒前
盼盼527完成签到 ,获得积分10
6秒前
完美世界应助电池golden采纳,获得10
6秒前
打打应助飘逸的白玉采纳,获得10
6秒前
诩珝栩完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
bkagyin应助郭mm采纳,获得10
7秒前
杨树应助zxh采纳,获得10
8秒前
cc发布了新的文献求助10
8秒前
Tyche完成签到,获得积分10
8秒前
8秒前
斯文败类应助luoliping采纳,获得10
8秒前
东拉西扯完成签到,获得积分10
8秒前
斯文败类应助汤圆儿采纳,获得10
9秒前
标致的小张同学完成签到,获得积分10
9秒前
酷波er应助楪祈爱着集采纳,获得10
10秒前
10秒前
老孟发布了新的文献求助10
10秒前
可爱藏今发布了新的文献求助10
11秒前
Z1987发布了新的文献求助10
11秒前
Matrix发布了新的文献求助30
11秒前
清歌浊酒发布了新的文献求助10
12秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296982
求助须知:如何正确求助?哪些是违规求助? 2932577
关于积分的说明 8457843
捐赠科研通 2605253
什么是DOI,文献DOI怎么找? 1422179
科研通“疑难数据库(出版商)”最低求助积分说明 661332
邀请新用户注册赠送积分活动 644534