An Approach for Character Recognition in Piston Cavity with Faster R-CNN and Prior Knowledge Library of Character Sequences

性格(数学) 活塞(光学) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 语音识别 数学 物理 光学 几何学 波前
作者
Lan Junfeng,Hongyan Wang,Jinping Li
标识
DOI:10.1109/ccai50917.2021.9447471
摘要

In the manufacturing process of piston, most of the piston cavities are printed with different character sequences to describe the specifications of piston. It is labor-consuming and inefficient to read the piston cavity character sequences manually. Although scholars have done a lot of researches in the field of industrial character recognition, there are few researches on piston cavity character recognition. A piston cavity character recognition method based on Faster R-CNN and priori knowledge library of character sequences is presented. First, we design a ring light source and an imaging device for the piston cavity based on the characters of the piston cavity protruding upward and the texture of the metal being easily reflective. Second, we use the character images in piston cavity collected by the imaging device to make character dataset. Third, according to the noisy background of the piston cavity image, Gaussian filtering and morphological operations were used to obtain a clean background image of the piston cavity. Fourth, use the Faster R-CNN training dataset to get the character recognition model, and then use the character type and position information detected by the recognition model to form a character sequence. Fifth, according to the highly similar characteristics of the character sequences of the same piston model, a character sequences prior knowledge library is constructed to correct the recognition results of Faster R-CNN. The experimental results show that the accuracy rate of the character sequences detected by the character recognition model is 95.5%. And when combined with the prior library of character sequences, the accuracy rate of the character sequences is 99%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzn完成签到 ,获得积分10
1秒前
完美世界应助333采纳,获得10
1秒前
1秒前
1秒前
脑洞疼应助王大大采纳,获得40
2秒前
2秒前
2秒前
3秒前
4秒前
dugu0010完成签到,获得积分10
5秒前
5秒前
SciGPT应助彩色囧采纳,获得10
6秒前
斯文败类应助怡然咖啡豆采纳,获得10
6秒前
在水一方应助独指蜗牛采纳,获得10
6秒前
淡定冰双发布了新的文献求助10
6秒前
8秒前
8秒前
冬青完成签到,获得积分10
8秒前
Ym发布了新的文献求助10
8秒前
肖子瑶发布了新的文献求助10
8秒前
叮叮车发布了新的文献求助10
9秒前
朴素冰旋完成签到,获得积分10
11秒前
12秒前
NexusExplorer应助滴滴滴采纳,获得10
12秒前
13秒前
liulin完成签到,获得积分10
13秒前
美味又健康完成签到 ,获得积分10
13秒前
小胡发布了新的文献求助10
14秒前
淡定冰双完成签到,获得积分10
14秒前
15秒前
大智若愚骨头完成签到,获得积分10
15秒前
岗岗发布了新的文献求助10
16秒前
完美世界应助Supreme采纳,获得10
17秒前
丫丫完成签到,获得积分10
17秒前
英俊的铭应助叮叮车采纳,获得10
17秒前
17秒前
瘦瘦幻梦发布了新的文献求助10
18秒前
123发布了新的文献求助10
18秒前
19秒前
will214发布了新的文献求助30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178503
求助须知:如何正确求助?哪些是违规求助? 4366768
关于积分的说明 13595915
捐赠科研通 4217093
什么是DOI,文献DOI怎么找? 2312847
邀请新用户注册赠送积分活动 1311701
关于科研通互助平台的介绍 1260036