An Approach for Character Recognition in Piston Cavity with Faster R-CNN and Prior Knowledge Library of Character Sequences

性格(数学) 活塞(光学) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 语音识别 数学 物理 光学 几何学 波前
作者
Lan Junfeng,Hongyan Wang,Jinping Li
标识
DOI:10.1109/ccai50917.2021.9447471
摘要

In the manufacturing process of piston, most of the piston cavities are printed with different character sequences to describe the specifications of piston. It is labor-consuming and inefficient to read the piston cavity character sequences manually. Although scholars have done a lot of researches in the field of industrial character recognition, there are few researches on piston cavity character recognition. A piston cavity character recognition method based on Faster R-CNN and priori knowledge library of character sequences is presented. First, we design a ring light source and an imaging device for the piston cavity based on the characters of the piston cavity protruding upward and the texture of the metal being easily reflective. Second, we use the character images in piston cavity collected by the imaging device to make character dataset. Third, according to the noisy background of the piston cavity image, Gaussian filtering and morphological operations were used to obtain a clean background image of the piston cavity. Fourth, use the Faster R-CNN training dataset to get the character recognition model, and then use the character type and position information detected by the recognition model to form a character sequence. Fifth, according to the highly similar characteristics of the character sequences of the same piston model, a character sequences prior knowledge library is constructed to correct the recognition results of Faster R-CNN. The experimental results show that the accuracy rate of the character sequences detected by the character recognition model is 95.5%. And when combined with the prior library of character sequences, the accuracy rate of the character sequences is 99%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dxm发布了新的文献求助10
1秒前
dxszing完成签到 ,获得积分10
1秒前
相约在天边完成签到,获得积分10
1秒前
jialin发布了新的文献求助10
2秒前
思源应助刘奇采纳,获得10
2秒前
coast发布了新的文献求助10
2秒前
理想完成签到,获得积分10
3秒前
3秒前
5秒前
polarisier发布了新的文献求助10
5秒前
6秒前
7秒前
慕青应助dxm采纳,获得10
7秒前
Cyber_relic完成签到,获得积分10
8秒前
ding完成签到,获得积分10
8秒前
8秒前
9秒前
酷波er应助coast采纳,获得10
10秒前
10秒前
文文发布了新的文献求助10
12秒前
南门完成签到,获得积分10
12秒前
温以凡发布了新的文献求助10
12秒前
科研通AI6应助机灵铭采纳,获得10
12秒前
文静的炳发布了新的文献求助10
12秒前
13秒前
熊小兰发布了新的文献求助10
13秒前
djbj2022完成签到,获得积分10
13秒前
慕青应助hhh采纳,获得10
14秒前
韩立发布了新的文献求助10
14秒前
14秒前
chili完成签到,获得积分10
15秒前
忐忑的丝完成签到,获得积分10
16秒前
刘刘佳发布了新的文献求助10
18秒前
18秒前
20秒前
djbj2022发布了新的文献求助10
20秒前
fengfeng发布了新的文献求助10
21秒前
22秒前
22秒前
薛微有点甜完成签到,获得积分10
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930