An Approach for Character Recognition in Piston Cavity with Faster R-CNN and Prior Knowledge Library of Character Sequences

性格(数学) 活塞(光学) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 语音识别 数学 物理 光学 几何学 波前
作者
Lan Junfeng,Hongyan Wang,Jinping Li
标识
DOI:10.1109/ccai50917.2021.9447471
摘要

In the manufacturing process of piston, most of the piston cavities are printed with different character sequences to describe the specifications of piston. It is labor-consuming and inefficient to read the piston cavity character sequences manually. Although scholars have done a lot of researches in the field of industrial character recognition, there are few researches on piston cavity character recognition. A piston cavity character recognition method based on Faster R-CNN and priori knowledge library of character sequences is presented. First, we design a ring light source and an imaging device for the piston cavity based on the characters of the piston cavity protruding upward and the texture of the metal being easily reflective. Second, we use the character images in piston cavity collected by the imaging device to make character dataset. Third, according to the noisy background of the piston cavity image, Gaussian filtering and morphological operations were used to obtain a clean background image of the piston cavity. Fourth, use the Faster R-CNN training dataset to get the character recognition model, and then use the character type and position information detected by the recognition model to form a character sequence. Fifth, according to the highly similar characteristics of the character sequences of the same piston model, a character sequences prior knowledge library is constructed to correct the recognition results of Faster R-CNN. The experimental results show that the accuracy rate of the character sequences detected by the character recognition model is 95.5%. And when combined with the prior library of character sequences, the accuracy rate of the character sequences is 99%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
薛博文完成签到,获得积分20
3秒前
4秒前
余哈哈发布了新的文献求助10
4秒前
6秒前
所所应助AARON采纳,获得10
7秒前
刘1完成签到 ,获得积分10
8秒前
天蓝完成签到,获得积分10
9秒前
领导范儿应助王贤平采纳,获得10
10秒前
10秒前
岑中归月发布了新的文献求助10
10秒前
美好斓发布了新的文献求助10
10秒前
11秒前
12秒前
www完成签到 ,获得积分10
13秒前
Chenzhs发布了新的文献求助10
13秒前
隐形曼青应助医学小渣渣采纳,获得10
14秒前
摸俞发布了新的文献求助10
14秒前
默默的恶天完成签到,获得积分20
14秒前
15秒前
Ginger发布了新的文献求助20
15秒前
在水一方应助不加糖采纳,获得10
15秒前
威武的夜绿完成签到,获得积分10
17秒前
夫列杰尼发布了新的文献求助10
17秒前
爱睡觉的森森完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
喝儿何发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
24秒前
朱珏虹完成签到,获得积分10
25秒前
yuki发布了新的文献求助10
27秒前
夫列杰尼完成签到,获得积分10
27秒前
27秒前
梨花雨凉完成签到,获得积分10
28秒前
王贤平发布了新的文献求助10
28秒前
kevindm完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109