An Approach for Character Recognition in Piston Cavity with Faster R-CNN and Prior Knowledge Library of Character Sequences

性格(数学) 活塞(光学) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 语音识别 数学 物理 光学 几何学 波前
作者
Lan Junfeng,Hongyan Wang,Jinping Li
标识
DOI:10.1109/ccai50917.2021.9447471
摘要

In the manufacturing process of piston, most of the piston cavities are printed with different character sequences to describe the specifications of piston. It is labor-consuming and inefficient to read the piston cavity character sequences manually. Although scholars have done a lot of researches in the field of industrial character recognition, there are few researches on piston cavity character recognition. A piston cavity character recognition method based on Faster R-CNN and priori knowledge library of character sequences is presented. First, we design a ring light source and an imaging device for the piston cavity based on the characters of the piston cavity protruding upward and the texture of the metal being easily reflective. Second, we use the character images in piston cavity collected by the imaging device to make character dataset. Third, according to the noisy background of the piston cavity image, Gaussian filtering and morphological operations were used to obtain a clean background image of the piston cavity. Fourth, use the Faster R-CNN training dataset to get the character recognition model, and then use the character type and position information detected by the recognition model to form a character sequence. Fifth, according to the highly similar characteristics of the character sequences of the same piston model, a character sequences prior knowledge library is constructed to correct the recognition results of Faster R-CNN. The experimental results show that the accuracy rate of the character sequences detected by the character recognition model is 95.5%. And when combined with the prior library of character sequences, the accuracy rate of the character sequences is 99%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呀哦呀完成签到,获得积分10
刚刚
迟迟发布了新的文献求助10
1秒前
2秒前
雪白丸子发布了新的文献求助10
2秒前
坨坨发布了新的文献求助10
4秒前
5秒前
Hello应助当下最好采纳,获得10
5秒前
HMONEY完成签到,获得积分10
6秒前
6秒前
7秒前
太阳完成签到,获得积分10
7秒前
SciGPT应助小语丝采纳,获得10
8秒前
TONG发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
画凌烟发布了新的文献求助10
11秒前
ab完成签到,获得积分10
11秒前
爆米花应助闪闪明轩采纳,获得10
12秒前
笨笨米卡完成签到,获得积分10
12秒前
HSDSD发布了新的文献求助10
13秒前
13秒前
xl发布了新的文献求助30
14秒前
curryand完成签到 ,获得积分20
14秒前
不知似若发布了新的文献求助10
15秒前
极意发布了新的文献求助10
16秒前
lk发布了新的文献求助10
16秒前
16秒前
xtz发布了新的文献求助30
18秒前
慕青应助白华苍松采纳,获得10
18秒前
大模型应助kong采纳,获得10
18秒前
当下最好发布了新的文献求助10
18秒前
斯文败类应助HSDSD采纳,获得10
19秒前
慕青应助爱学习的小张采纳,获得10
19秒前
情怀应助高xy采纳,获得10
19秒前
20秒前
画凌烟完成签到,获得积分20
20秒前
丘比特应助吕凯迪采纳,获得10
21秒前
FFGC发布了新的文献求助10
21秒前
慕青应助蘇尼Ai采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027