已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Approach for Character Recognition in Piston Cavity with Faster R-CNN and Prior Knowledge Library of Character Sequences

性格(数学) 活塞(光学) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 语音识别 数学 物理 光学 几何学 波前
作者
Lan Junfeng,Hongyan Wang,Jinping Li
标识
DOI:10.1109/ccai50917.2021.9447471
摘要

In the manufacturing process of piston, most of the piston cavities are printed with different character sequences to describe the specifications of piston. It is labor-consuming and inefficient to read the piston cavity character sequences manually. Although scholars have done a lot of researches in the field of industrial character recognition, there are few researches on piston cavity character recognition. A piston cavity character recognition method based on Faster R-CNN and priori knowledge library of character sequences is presented. First, we design a ring light source and an imaging device for the piston cavity based on the characters of the piston cavity protruding upward and the texture of the metal being easily reflective. Second, we use the character images in piston cavity collected by the imaging device to make character dataset. Third, according to the noisy background of the piston cavity image, Gaussian filtering and morphological operations were used to obtain a clean background image of the piston cavity. Fourth, use the Faster R-CNN training dataset to get the character recognition model, and then use the character type and position information detected by the recognition model to form a character sequence. Fifth, according to the highly similar characteristics of the character sequences of the same piston model, a character sequences prior knowledge library is constructed to correct the recognition results of Faster R-CNN. The experimental results show that the accuracy rate of the character sequences detected by the character recognition model is 95.5%. And when combined with the prior library of character sequences, the accuracy rate of the character sequences is 99%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助微昆界采纳,获得10
1秒前
2秒前
ding应助顾北采纳,获得10
6秒前
pphu发布了新的文献求助10
6秒前
homeless完成签到 ,获得积分10
7秒前
晏子周关注了科研通微信公众号
7秒前
Joaquin完成签到 ,获得积分10
8秒前
阿捷发布了新的文献求助10
8秒前
瞬间完成签到 ,获得积分10
9秒前
今后应助zzz采纳,获得10
11秒前
12秒前
烟花应助自信河马采纳,获得10
12秒前
13秒前
爆米花应助踏实的觅荷采纳,获得10
14秒前
17秒前
无花果应助tian19998采纳,获得10
17秒前
18秒前
18秒前
19秒前
19秒前
19秒前
now发布了新的文献求助10
20秒前
小七完成签到,获得积分20
21秒前
111完成签到,获得积分10
21秒前
沐辰辰发布了新的文献求助10
22秒前
23秒前
黄思雯完成签到,获得积分10
23秒前
24秒前
机灵鬼发布了新的文献求助10
24秒前
极品男大发布了新的文献求助10
24秒前
小七发布了新的文献求助30
25秒前
25秒前
tian19998完成签到,获得积分10
26秒前
26秒前
大个应助Hua采纳,获得10
27秒前
hkf发布了新的文献求助10
27秒前
28秒前
晏子周发布了新的文献求助10
29秒前
tian19998发布了新的文献求助10
30秒前
JamesPei应助柚子采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4609841
求助须知:如何正确求助?哪些是违规求助? 4016077
关于积分的说明 12434231
捐赠科研通 3697464
什么是DOI,文献DOI怎么找? 2038746
邀请新用户注册赠送积分活动 1071727
科研通“疑难数据库(出版商)”最低求助积分说明 955446