An Approach for Character Recognition in Piston Cavity with Faster R-CNN and Prior Knowledge Library of Character Sequences

性格(数学) 活塞(光学) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 语音识别 数学 物理 光学 几何学 波前
作者
Lan Junfeng,Hongyan Wang,Jinping Li
标识
DOI:10.1109/ccai50917.2021.9447471
摘要

In the manufacturing process of piston, most of the piston cavities are printed with different character sequences to describe the specifications of piston. It is labor-consuming and inefficient to read the piston cavity character sequences manually. Although scholars have done a lot of researches in the field of industrial character recognition, there are few researches on piston cavity character recognition. A piston cavity character recognition method based on Faster R-CNN and priori knowledge library of character sequences is presented. First, we design a ring light source and an imaging device for the piston cavity based on the characters of the piston cavity protruding upward and the texture of the metal being easily reflective. Second, we use the character images in piston cavity collected by the imaging device to make character dataset. Third, according to the noisy background of the piston cavity image, Gaussian filtering and morphological operations were used to obtain a clean background image of the piston cavity. Fourth, use the Faster R-CNN training dataset to get the character recognition model, and then use the character type and position information detected by the recognition model to form a character sequence. Fifth, according to the highly similar characteristics of the character sequences of the same piston model, a character sequences prior knowledge library is constructed to correct the recognition results of Faster R-CNN. The experimental results show that the accuracy rate of the character sequences detected by the character recognition model is 95.5%. And when combined with the prior library of character sequences, the accuracy rate of the character sequences is 99%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助ddk六采纳,获得10
刚刚
手拿大炮完成签到,获得积分10
刚刚
刚刚
1秒前
SYLH应助果果采纳,获得10
1秒前
西西完成签到,获得积分10
3秒前
科研通AI2S应助bgt采纳,获得10
3秒前
3秒前
4秒前
大喜完成签到,获得积分10
4秒前
4秒前
爱因斯宣发布了新的文献求助10
4秒前
T拐拐发布了新的文献求助10
5秒前
saajim发布了新的文献求助10
5秒前
WQY完成签到,获得积分10
5秒前
共享精神应助威武的冷风采纳,获得10
5秒前
6秒前
老实巴交完成签到,获得积分10
7秒前
7秒前
7秒前
vinecho发布了新的文献求助30
7秒前
8秒前
tian完成签到,获得积分0
8秒前
8秒前
羞涩的渊思完成签到 ,获得积分10
9秒前
李爱国应助JoshuaChen采纳,获得10
9秒前
文章刻骨几人知完成签到,获得积分10
9秒前
一颗煤炭完成签到 ,获得积分10
10秒前
123发布了新的文献求助10
10秒前
10秒前
NexusExplorer应助lx840518采纳,获得10
11秒前
小马甲应助美满的曼寒采纳,获得10
11秒前
11秒前
凹凸曼发布了新的文献求助30
12秒前
12秒前
12秒前
HenryXiao关注了科研通微信公众号
13秒前
13秒前
哈哈哈哈哈哈完成签到,获得积分10
13秒前
天天摸鱼完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650