An Approach for Character Recognition in Piston Cavity with Faster R-CNN and Prior Knowledge Library of Character Sequences

性格(数学) 活塞(光学) 计算机科学 人工智能 计算机视觉 模式识别(心理学) 语音识别 数学 物理 光学 几何学 波前
作者
Lan Junfeng,Hongyan Wang,Jinping Li
标识
DOI:10.1109/ccai50917.2021.9447471
摘要

In the manufacturing process of piston, most of the piston cavities are printed with different character sequences to describe the specifications of piston. It is labor-consuming and inefficient to read the piston cavity character sequences manually. Although scholars have done a lot of researches in the field of industrial character recognition, there are few researches on piston cavity character recognition. A piston cavity character recognition method based on Faster R-CNN and priori knowledge library of character sequences is presented. First, we design a ring light source and an imaging device for the piston cavity based on the characters of the piston cavity protruding upward and the texture of the metal being easily reflective. Second, we use the character images in piston cavity collected by the imaging device to make character dataset. Third, according to the noisy background of the piston cavity image, Gaussian filtering and morphological operations were used to obtain a clean background image of the piston cavity. Fourth, use the Faster R-CNN training dataset to get the character recognition model, and then use the character type and position information detected by the recognition model to form a character sequence. Fifth, according to the highly similar characteristics of the character sequences of the same piston model, a character sequences prior knowledge library is constructed to correct the recognition results of Faster R-CNN. The experimental results show that the accuracy rate of the character sequences detected by the character recognition model is 95.5%. And when combined with the prior library of character sequences, the accuracy rate of the character sequences is 99%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ww发布了新的文献求助10
2秒前
slp完成签到 ,获得积分10
3秒前
还在考虑完成签到,获得积分10
3秒前
6秒前
7秒前
hurry完成签到,获得积分20
8秒前
ttgx完成签到,获得积分10
9秒前
森宝完成签到,获得积分10
10秒前
chenlc发布了新的文献求助10
11秒前
arui发布了新的文献求助10
12秒前
感性的神级完成签到,获得积分10
12秒前
Zureil发布了新的文献求助10
13秒前
15秒前
17秒前
等待丹秋完成签到,获得积分10
17秒前
Yolo完成签到,获得积分10
18秒前
KingYugene完成签到,获得积分10
19秒前
英勇绮南完成签到,获得积分10
19秒前
WGY_Pepper发布了新的文献求助10
20秒前
新奇发布了新的文献求助10
22秒前
打打应助Zureil采纳,获得10
22秒前
CodeCraft应助apckkk采纳,获得30
22秒前
baozi发布了新的文献求助10
22秒前
852应助arui采纳,获得10
22秒前
白华苍松发布了新的文献求助10
23秒前
一昂杨完成签到,获得积分10
26秒前
清时.发布了新的文献求助10
26秒前
今天只做一件事完成签到,获得积分0
26秒前
糊涂涂完成签到,获得积分10
27秒前
Akim应助云云的困困采纳,获得10
28秒前
小二郎应助新奇采纳,获得10
29秒前
afterall完成签到 ,获得积分10
29秒前
30秒前
31秒前
上官若男应助hs采纳,获得10
32秒前
研友_VZG7GZ应助初九采纳,获得10
32秒前
皮卡丘完成签到 ,获得积分10
33秒前
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139810
求助须知:如何正确求助?哪些是违规求助? 2790682
关于积分的说明 7796255
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601176