Chemical language models enable navigation in sparsely populated chemical space

生成模型 化学空间 人工智能 生成语法 计算机科学 水准点(测量) 机器学习 领域(数学) 质量(理念) 深度学习 人工神经网络 空格(标点符号) 药物发现 生物信息学 生物 数学 哲学 大地测量学 认识论 地理 纯数学 操作系统
作者
Michael A. Skinnider,R. Greg Stacey,David S. Wishart,Leonard J. Foster
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (9): 759-770 被引量:113
标识
DOI:10.1038/s42256-021-00368-1
摘要

Deep generative models are powerful tools for the exploration of chemical space, enabling the on-demand generation of molecules with desired physical, chemical or biological properties. However, these models are typically thought to require training datasets comprising hundreds of thousands, or even millions, of molecules. This perception limits the application of deep generative models in regions of chemical space populated by a relatively small number of examples. Here, we systematically evaluate and optimize generative models of molecules based on recurrent neural networks in low-data settings. We find that robust models can be learned from far fewer examples than has been widely assumed. We identify strategies that further reduce the number of molecules required to learn a model of equivalent quality, notably including data augmentation by non-canonical SMILES enumeration, and demonstrate the application of these principles by learning models of bacterial, plant and fungal metabolomes. The structure of our experiments also allows us to benchmark the metrics used to evaluate generative models themselves. We find that many of the most widely used metrics in the field fail to capture model quality, but we identify a subset of well-behaved metrics that provide a sound basis for model development. Collectively, our work provides a foundation for directly learning generative models in sparsely populated regions of chemical space. Deep learning-based methods to generate new molecules can require huge amounts of data to train. Skinnider et al. show that models developed for natural language processing work well for generating molecules from small amounts of training data, and identify robust metrics to evaluate the quality of generated molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李四发布了新的文献求助10
刚刚
情怀应助雪白凌翠采纳,获得10
刚刚
微笑的丑完成签到,获得积分20
1秒前
1秒前
完美世界应助dwy采纳,获得10
1秒前
Zx_1993应助UAU采纳,获得10
1秒前
加油干完成签到 ,获得积分10
1秒前
称心怀莲发布了新的文献求助10
1秒前
严三笑完成签到,获得积分10
1秒前
小马甲应助七七采纳,获得10
1秒前
脑洞疼应助Ray采纳,获得10
2秒前
YW完成签到,获得积分10
3秒前
3秒前
abc97发布了新的文献求助10
3秒前
3秒前
beike完成签到,获得积分10
3秒前
仁爱发卡发布了新的文献求助10
3秒前
柳贯一完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
lan发布了新的文献求助10
4秒前
4秒前
wenbwenbo完成签到,获得积分10
5秒前
Young完成签到,获得积分10
5秒前
善良的碧灵完成签到,获得积分10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
微笑的丑发布了新的文献求助10
6秒前
6秒前
6秒前
yy发布了新的文献求助10
7秒前
汉堡包应助jin_strive采纳,获得30
7秒前
乐观的海发布了新的文献求助10
7秒前
Ava应助发酱采纳,获得10
8秒前
8秒前
执着俊驰发布了新的文献求助10
8秒前
8秒前
xiao发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405038
求助须知:如何正确求助?哪些是违规求助? 4523317
关于积分的说明 14093145
捐赠科研通 4437067
什么是DOI,文献DOI怎么找? 2435432
邀请新用户注册赠送积分活动 1427659
关于科研通互助平台的介绍 1406000