Chemical language models enable navigation in sparsely populated chemical space

生成模型 化学空间 人工智能 生成语法 计算机科学 水准点(测量) 机器学习 领域(数学) 质量(理念) 深度学习 人工神经网络 空格(标点符号) 药物发现 生物信息学 生物 数学 地理 认识论 纯数学 哲学 操作系统 大地测量学
作者
Michael A. Skinnider,R. Greg Stacey,David S. Wishart,Leonard J. Foster
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (9): 759-770 被引量:113
标识
DOI:10.1038/s42256-021-00368-1
摘要

Deep generative models are powerful tools for the exploration of chemical space, enabling the on-demand generation of molecules with desired physical, chemical or biological properties. However, these models are typically thought to require training datasets comprising hundreds of thousands, or even millions, of molecules. This perception limits the application of deep generative models in regions of chemical space populated by a relatively small number of examples. Here, we systematically evaluate and optimize generative models of molecules based on recurrent neural networks in low-data settings. We find that robust models can be learned from far fewer examples than has been widely assumed. We identify strategies that further reduce the number of molecules required to learn a model of equivalent quality, notably including data augmentation by non-canonical SMILES enumeration, and demonstrate the application of these principles by learning models of bacterial, plant and fungal metabolomes. The structure of our experiments also allows us to benchmark the metrics used to evaluate generative models themselves. We find that many of the most widely used metrics in the field fail to capture model quality, but we identify a subset of well-behaved metrics that provide a sound basis for model development. Collectively, our work provides a foundation for directly learning generative models in sparsely populated regions of chemical space. Deep learning-based methods to generate new molecules can require huge amounts of data to train. Skinnider et al. show that models developed for natural language processing work well for generating molecules from small amounts of training data, and identify robust metrics to evaluate the quality of generated molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lailai完成签到,获得积分10
2秒前
Fairyvivi发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
yina完成签到,获得积分20
3秒前
Eric发布了新的文献求助30
3秒前
4秒前
欢呼的棒棒糖完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
shaw完成签到,获得积分10
7秒前
7秒前
7秒前
桐桐应助Mannose采纳,获得10
8秒前
桓某人发布了新的文献求助10
8秒前
sq1997发布了新的文献求助10
8秒前
lee完成签到,获得积分20
8秒前
lmh发布了新的文献求助10
8秒前
高高高发布了新的文献求助10
9秒前
9秒前
11秒前
阿瓦隆的蓝胖子完成签到,获得积分10
11秒前
乐乐应助Linda采纳,获得10
11秒前
光亮小笼包完成签到 ,获得积分10
11秒前
北冥有鱼发布了新的文献求助10
12秒前
桓某人完成签到,获得积分10
12秒前
MeSs完成签到 ,获得积分10
12秒前
13秒前
英俊的铭应助77采纳,获得10
13秒前
13秒前
情怀应助沉静的迎荷采纳,获得10
15秒前
我是老大应助阿凉采纳,获得10
16秒前
丘比特应助顺心的书包采纳,获得10
17秒前
归尘发布了新的文献求助10
17秒前
NanFeng完成签到,获得积分10
17秒前
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974712
求助须知:如何正确求助?哪些是违规求助? 3519159
关于积分的说明 11197254
捐赠科研通 3255257
什么是DOI,文献DOI怎么找? 1797724
邀请新用户注册赠送积分活动 877130
科研通“疑难数据库(出版商)”最低求助积分说明 806132