清脆的
基因组编辑
锌指核酸酶
Cas9
生物
转录激活物样效应核酸酶
计算生物学
基因
遗传学
基因组
作者
Darshana Gupta,Oindrila Bhattacharjee,Drishti Mandal,Madhab Kumar Sen,Dhritiman Dey,Asish Dasgupta,Tawsif Ahmed Kazi,Rahul Gupta,Senjuti Sinharoy,Krishnendu Acharya,Dhrubajyoti Chattopadhyay,V. Ravichandiran,Syamal Roy,Dipanjan Ghosh
出处
期刊:Life Sciences
[Elsevier]
日期:2019-09-01
卷期号:232: 116636-116636
被引量:171
标识
DOI:10.1016/j.lfs.2019.116636
摘要
Till date, only three techniques namely Zinc Finger Nuclease (ZFN), Transcription-Activator Like Effector Nucleases (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9 (CRISPR-Cas9) are available for targeted genome editing. CRISPR-Cas system is very efficient, fast, easy and cheap technique for achieving knock-out gene in the cell. CRISPR-Cas9 system refurbishes the targeted genome editing approach into a more expedient and competent way, thus facilitating proficient genome editing through embattled double-strand breaks in approximately any organism and cell type. The off-target effects of CRISPR Cas system has been circumnavigated by using paired nickases. Moreover, CRISPR-Cas9 has been used effectively for numerous purposes, like knock-out of a gene, regulation of endogenous gene expression, live-cell labelling of chromosomal loci, edition of single-stranded RNA and high-throughput gene screening. The execution of the CRISPR-Cas9 system has amplified the number of accessible scientific substitutes for studying gene function, thus enabling generation of CRISPR-based disease models. Even though many mechanistic questions are left behind to be answered and the system is not yet fool-proof i.e., a number of challenges are yet to be addressed, the employment of CRISPR-Cas9–based genome engineering technologies will increase our understanding to disease processes and their treatment in the near future. In this review we have discussed the history of CRISPR-Cas9, its mechanism for genome editing and its application in animal, plant and protozoan parasites. Additionally, the pros and cons of CRISPR-Cas9 and its potential in therapeutic application have also been detailed here.
科研通智能强力驱动
Strongly Powered by AbleSci AI