CRISPR-Cas9 system: A new-fangled dawn in gene editing

清脆的 基因组编辑 锌指核酸酶 Cas9 生物 转录激活物样效应核酸酶 计算生物学 基因 遗传学 基因组
作者
Darshana Gupta,Oindrila Bhattacharjee,Drishti Mandal,Madhab Kumar Sen,Dhritiman Dey,Asish Dasgupta,Tawsif Ahmed Kazi,Rahul Gupta,Senjuti Sinharoy,Krishnendu Acharya,Dhrubajyoti Chattopadhyay,V. Ravichandiran,Syamal Roy,Dipanjan Ghosh
出处
期刊:Life Sciences [Elsevier]
卷期号:232: 116636-116636 被引量:171
标识
DOI:10.1016/j.lfs.2019.116636
摘要

Till date, only three techniques namely Zinc Finger Nuclease (ZFN), Transcription-Activator Like Effector Nucleases (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9 (CRISPR-Cas9) are available for targeted genome editing. CRISPR-Cas system is very efficient, fast, easy and cheap technique for achieving knock-out gene in the cell. CRISPR-Cas9 system refurbishes the targeted genome editing approach into a more expedient and competent way, thus facilitating proficient genome editing through embattled double-strand breaks in approximately any organism and cell type. The off-target effects of CRISPR Cas system has been circumnavigated by using paired nickases. Moreover, CRISPR-Cas9 has been used effectively for numerous purposes, like knock-out of a gene, regulation of endogenous gene expression, live-cell labelling of chromosomal loci, edition of single-stranded RNA and high-throughput gene screening. The execution of the CRISPR-Cas9 system has amplified the number of accessible scientific substitutes for studying gene function, thus enabling generation of CRISPR-based disease models. Even though many mechanistic questions are left behind to be answered and the system is not yet fool-proof i.e., a number of challenges are yet to be addressed, the employment of CRISPR-Cas9–based genome engineering technologies will increase our understanding to disease processes and their treatment in the near future. In this review we have discussed the history of CRISPR-Cas9, its mechanism for genome editing and its application in animal, plant and protozoan parasites. Additionally, the pros and cons of CRISPR-Cas9 and its potential in therapeutic application have also been detailed here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助vine采纳,获得10
3秒前
感谢受伤的电话转发科研通微信,获得积分50
5秒前
Jasper应助罗博超采纳,获得10
5秒前
5秒前
6秒前
9秒前
9秒前
感谢是猪不是猫转发科研通微信,获得积分50
9秒前
xiaomaidou发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
lj完成签到,获得积分10
14秒前
kejun发布了新的文献求助10
14秒前
科研通AI2S应助chris采纳,获得10
14秒前
Ava应助Junt采纳,获得10
15秒前
jiang发布了新的文献求助10
15秒前
吴正言发布了新的文献求助10
15秒前
荭筱葒发布了新的文献求助10
16秒前
曾泳钧完成签到,获得积分10
16秒前
16秒前
爱吃冬瓜发布了新的文献求助10
17秒前
不配.应助俏皮的绝山采纳,获得20
17秒前
Hello应助zzzeeee采纳,获得10
18秒前
19秒前
Dawn完成签到,获得积分10
19秒前
感谢虞美人转发科研通微信,获得积分50
20秒前
科研通AI2S应助糖葫芦采纳,获得10
20秒前
nakl完成签到,获得积分10
20秒前
20秒前
21秒前
vine发布了新的文献求助10
23秒前
爱上写文章完成签到,获得积分20
23秒前
Dawn发布了新的文献求助10
24秒前
24秒前
24秒前
JM完成签到,获得积分10
24秒前
Alaskan发布了新的文献求助10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3132768
求助须知:如何正确求助?哪些是违规求助? 2783885
关于积分的说明 7764141
捐赠科研通 2439062
什么是DOI,文献DOI怎么找? 1296626
科研通“疑难数据库(出版商)”最低求助积分说明 624651
版权声明 600751