免疫学
溃疡性结肠炎
炎症性肠病
结肠炎
医学
趋化因子
炎症
生物
疾病
内科学
作者
Annabel Kleinwort,Paula Döring,Christine Hackbarth,Maciej Patrzyk,Claus–Dieter Heidecke,Tobias Schulze
摘要
Diversion colitis (DC) is a frequent clinical condition occurring in patients with bowel segments excluded from the fecal stream as a result of a diverting enterostomy. The etiology of this disease remains ill-defined but appears to differ from that of classical inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. Research aimed to decipher the pathophysiological mechanisms leading to the development of this disease has been severely hampered by the lack of an appropriate murine model. This protocol generates a murine model of DC that facilitates the study of the immune system's role and its interaction with the microbiome in the development of DC. In this model using C57BL/6 animals, distal parts of the colon are excluded from the fecal stream by creating a distal colostomy, triggering the development of mild to moderate inflammation in the excluded bowel segments and reproducing the hallmark lesions of human DC with a moderate systemic inflammatory response. In contrast to the rat model, a large number of genetically-modified murine models on the C57BL/6 background are available. The combination of these animals with our model allows the potential roles of individual cytokines, chemokines, or receptors of bioactive molecules (e.g., interleukin (IL)-17; IL-10, chemokine CXCL13, chemokine receptors CXCR5 and CCR7, and the sphingosine-1-phosphate receptor 4) to be assessed in the pathogenesis of DC. The availability of congenic mouse strains on the C57BL/6 background largely facilitates transfer experiments to establish the roles of distinct cell types involved in the etiology of DC. Finally, the model offers the opportunity to assess the influences of local interventions (e.g., modification of the local microbiome or local anti-inflammatory therapy) on mucosal immunity in affected and non-affected bowel segments and the on systemic immune homeostasis.
科研通智能强力驱动
Strongly Powered by AbleSci AI