Endothelial to mesenchymal transformation is induced by altered extracellular matrix in aortic valve endothelial cells

材料科学 细胞外基质 间充质干细胞 内皮干细胞 转化(遗传学) 基质(化学分析) 细胞生物学 主动脉瓣 生物医学工程 心脏病学 复合材料 医学 生物 生物化学 体外 基因
作者
Sudip Dahal,Peter Huang,Bruce T. Murray,Gretchen J. Mahler
出处
期刊:Journal of Biomedical Materials Research Part A [Wiley]
卷期号:105 (10): 2729-2741 被引量:48
标识
DOI:10.1002/jbm.a.36133
摘要

Abstract Alterations in shear stress, mechanical deformation, extracellular matrix (ECM) composition and exposure to inflammatory conditions are known to cause endothelial to mesenchymal transformation (EndMT). This change in endothelial phenotype has only recently been linked to adult pathologies such as cancer progression, organ fibrosis, and calcific aortic valve disease; and its function in adult physiology, especially in response to tissue mechanics, has not been rigorously investigated. EndMT is a response to mechanical and biochemical signals that results in the remodeling of underlying tissues. In diseased aortic valves, glycosaminoglycans (GAGs) are present in the collagen‐rich valve fibrosa, and are deposited near calcified nodules. In this study, in vitro models of early and late‐stage valve disease were developed by incorporating the GAGs chondroitin sulfate (CS), hyaluronic acid, and dermatan sulfate into 3D collagen hydrogels with or without exposure to TGF‐β1 to simulate EndMT in response to microenvironmental changes. High levels of CS induced the highest rate of EndMT and led to the most collagen I and GAG production by mesenchymally transformed cells, which indicates a cell phenotype most likely to promote fibrotic disease. Mesenchymal transformation due to altered ECM was found to depend on cell–ECM bond strength and extracellular signal‐regulated protein kinases 1/2 signaling. Determining the environmental conditions that induce and promote EndMT, and the subsequent behavior of mesenchymally transformed cells, will advance understanding on the role of endothelial cells in tissue regeneration or disease progression. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2729–2741, 2017.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅龙完成签到 ,获得积分10
1秒前
雷老板发布了新的文献求助10
2秒前
PH关注了科研通微信公众号
2秒前
shuogesama完成签到,获得积分10
3秒前
整齐芷文发布了新的文献求助10
3秒前
pinghu完成签到,获得积分10
3秒前
小辣椒完成签到 ,获得积分10
4秒前
花花猪1989完成签到 ,获得积分10
4秒前
Yara.H完成签到 ,获得积分10
5秒前
skycool完成签到,获得积分10
5秒前
InfoNinja应助科研通管家采纳,获得20
8秒前
向雫应助科研通管家采纳,获得10
8秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
张三坟应助科研通管家采纳,获得20
8秒前
8秒前
8秒前
9秒前
喜悦静枫完成签到,获得积分10
9秒前
默默毛豆完成签到,获得积分10
10秒前
btsforever完成签到 ,获得积分10
11秒前
wjy发布了新的文献求助10
14秒前
hotcas完成签到,获得积分10
14秒前
细心宛凝完成签到,获得积分10
15秒前
今后应助清欢采纳,获得10
17秒前
SDY完成签到 ,获得积分10
17秒前
西瓜完成签到 ,获得积分10
18秒前
白开水完成签到,获得积分10
21秒前
幽若宝宝完成签到,获得积分10
22秒前
西子阳完成签到,获得积分10
22秒前
小花小宝和阿飞完成签到 ,获得积分10
23秒前
23秒前
awdasd完成签到,获得积分10
23秒前
霜序初四完成签到 ,获得积分10
24秒前
Orange应助yang采纳,获得10
26秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2997864
求助须知:如何正确求助?哪些是违规求助? 2658456
关于积分的说明 7196450
捐赠科研通 2293869
什么是DOI,文献DOI怎么找? 1216309
科研通“疑难数据库(出版商)”最低求助积分说明 593516
版权声明 592888