Impact of Matrix Species and Mass Spectrometry on Matrix Effects in Multi-Residue Pesticide Analysis Based on QuEChERS-LC-MS

探索者 质谱法 化学 色谱法 串联质谱法 农药残留 基质(化学分析) 选择性反应监测 杀虫剂 液相色谱-质谱法 农学 生物
作者
Shuang Zhang,Zhiyong He,Maomao Zeng,Jie Chen
出处
期刊:Foods [MDPI AG]
卷期号:12 (6): 1226-1226 被引量:9
标识
DOI:10.3390/foods12061226
摘要

With the popularity of multi-residue pesticide analysis based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) cleanup and liquid chromatography–mass spectrometry (LC-MS), matching optimal matrix-matched calibration protocols and LC-MS conditions to reduce matrix effects (MEs) has become a crucial task for analysts in their routines. However, dozens to hundreds of pesticide analytes in a single run generate increasingly multi-dimensional ME data, requiring appropriate tools to handle these data sets. Therefore, we established an ME analysis strategy by drawing on analytical thinking and tools from metabolomics analysis. Using this, matrix species-induced and mass spectrometry-induced systematic ME variations were distinguished, and pesticides contributed to the variations were scanned out. A simultaneous weakening of MEs on 24 pesticides in 32 different matrices was achieved using the time-of-flight-mass spectrometry (TOF-MS) scan under the information-dependent acquisition (IDA) mode of high-resolution mass spectrometry (HR-MS), compared to multiple reaction monitoring (MRM) scanning by tandem mass spectrometry (MS/MS). Bay leaf, ginger, rosemary, Amomum tsao-ko, Sichuan pepper, cilantro, Houttuynia cordata, and garlic sprout showed enhanced signal suppression in the MRM scan for 105 differential MRM transitions for 42 pesticides and in IDA mode for 33 pesticides, respectively. This study revealed the interference of matrix species and mass spectrometry on MEs and provided a novel strategy for ME analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的哈密瓜完成签到,获得积分10
1秒前
优秀的行云完成签到 ,获得积分10
1秒前
ohh完成签到,获得积分10
1秒前
thth完成签到,获得积分10
1秒前
ll完成签到,获得积分10
1秒前
Zz完成签到,获得积分20
2秒前
和谐灯泡完成签到,获得积分10
2秒前
3秒前
SciGPT应助huhu采纳,获得10
4秒前
kingwill应助rjhgh采纳,获得20
4秒前
cc完成签到,获得积分10
5秒前
明天要摆烂完成签到,获得积分10
6秒前
7秒前
9秒前
kx发布了新的文献求助10
9秒前
10秒前
Jasper应助Fiona采纳,获得10
12秒前
cc发布了新的文献求助10
13秒前
14秒前
苹果惜梦发布了新的文献求助10
14秒前
充电宝应助yangyang采纳,获得10
17秒前
18秒前
合适的致远完成签到,获得积分10
18秒前
18秒前
wanci应助少夫人采纳,获得10
18秒前
18秒前
小郭爱科研给小郭爱科研的求助进行了留言
19秒前
wanci应助李唯佳采纳,获得10
19秒前
20秒前
21秒前
21秒前
燕麦片完成签到 ,获得积分20
22秒前
23秒前
樊念烟发布了新的文献求助30
23秒前
整齐的泥猴桃完成签到 ,获得积分10
23秒前
111完成签到,获得积分10
24秒前
金蕊发布了新的文献求助30
25秒前
MG_aichy发布了新的文献求助10
25秒前
直率钢笔发布了新的文献求助10
25秒前
隐形峻熙完成签到 ,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551983
求助须知:如何正确求助?哪些是违规求助? 3128409
关于积分的说明 9377696
捐赠科研通 2827437
什么是DOI,文献DOI怎么找? 1554378
邀请新用户注册赠送积分活动 725463
科研通“疑难数据库(出版商)”最低求助积分说明 714884