石墨烯
材料科学
罗丹明B
试剂
氧化物
剥脱关节
电化学
纳米技术
纳米材料
化学工程
超声
溶剂
化学
有机化学
光催化
电极
催化作用
冶金
物理化学
工程类
作者
Shenchao Shi,Ruizheng Zhong,Lele Li,Chidan Wan,Can Wu
标识
DOI:10.1016/j.ultsonch.2022.106208
摘要
To date, multiple graphene@MXene hybrids have been reported via various synthesis approaches, but almost all the graphene@MXene hybrids inevitably used the reduced graphene oxide that prepared by chemical oxidation/reduction method, which generally involved the complex and dangerous operation procedure, and the highly toxic chemical reagent. How to prepare graphene@MXene hybrid through a simple, safe and eco-friendly synthetic route is highly desired. Compared with traditional synthesis technology, ultrasound synthesis strategy displays the merits of simplicity, low cost and environment protection. Herein, MXene (Ti3C2Tx) nanoflakes coupled with graphene nanosheets (graphene@MXene) were prepared in N-methylpyrrolidone (NMP) by simple ultrasound-assisted liquid-phase exfoliation method for the first time. Besides, the effect of types of solvent with different viscocity, sonication temperature and sonication duration time on the property of graphene@MXene hybrids were systematacially investigated. It is found the liquid-phase exfoliated graphene owned excellent electron transfer ability and the MXene (Ti3C2Tx) nanoflakes possessed outstanding adsorption property, the as-synthesized graphene@MXene hybrid exhibited significant signal synergistic enhancement effect toward the oxidation of hazardous veterinary drug residue compound (chlorpromazine) and food additives (rhodamine B). Based on this, a novel and sensitive electrochemical sensor was fabricated, the linear detection ranges were 5 nM to 0.5 μM for chlorpromazine with sensitivity of 1090 µA μM-1 cm-2, and 10 nM to 2.5 μM for rhodamine B with sensitivity of 440 and 102.14 µA μM-1 cm-2. Besides, the detection limits were evaluated to be as low as 1.25 nM and 2.45 nM for chlorpromazine and rhodamine B, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI