Deep reinforcement learning for spatial resource allocation: A case study of school districting

强化学习 钢筋 计算机科学 资源配置 资源(消歧) 运筹学 人工智能 心理学 工程类 社会心理学 计算机网络
作者
Di Zhang,Senlin Mu,Joseph Mango,Xiang Li
出处
标识
DOI:10.1177/23998083241302187
摘要

Spatial resource allocation is a multi-objective spatial optimization problem with multiple constraints. The division of school districts is a classic problem of spatial resource allocation. This paper proposes a new dynamically districting optimization method based on deep reinforcement learning to optimize the global effect of school districting. In the proposed method, the school district’s constantly adjusted allocation process is regarded as a multi-step Markov decision-making process. The method combines the advantages of a deep convolutional neural network with reinforcement learning for real-time response and flexibility, and directly learns behavioural policies based on the input of changing school district states. According to various constraints, this algorithm optimizes the distance of students to school and the utilization rate of schools, and it proposes a better allocation plan. To demonstrate its validity, the proposed method was evaluated using real datasets of two school districts in the United States. The experimental results studied in six different scenarios show that, compared with traditional algorithms, the new proposed method requires less prior knowledge and is globally optimal, and can provide a better allocation plan for school districting, which reduces the distance between students and schools and balances the utilization rate of schools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅畅完成签到 ,获得积分10
刚刚
霸气咖啡豆完成签到 ,获得积分10
刚刚
1秒前
调研昵称发布了新的文献求助10
1秒前
无奈抽屉完成签到 ,获得积分10
1秒前
清爽难敌关注了科研通微信公众号
2秒前
2秒前
顾矜应助5Hz采纳,获得10
4秒前
4秒前
Aurora发布了新的文献求助30
4秒前
6秒前
mojito发布了新的文献求助10
6秒前
6秒前
7秒前
EdwardKING完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
魔幻的夜白完成签到,获得积分10
9秒前
大模型应助超级的盼山采纳,获得10
9秒前
VDC应助勤奋静曼采纳,获得30
9秒前
ssnha完成签到 ,获得积分10
10秒前
10秒前
震动的化蛹完成签到,获得积分10
11秒前
科研通AI5应助强健的烧鹅采纳,获得10
12秒前
li发布了新的文献求助10
12秒前
背后勒发布了新的文献求助10
13秒前
吴昊东完成签到,获得积分10
13秒前
美女发布了新的文献求助10
13秒前
14秒前
大力听芹完成签到,获得积分10
14秒前
wasiwan发布了新的文献求助10
14秒前
14秒前
无花果应助木子李采纳,获得10
15秒前
16秒前
李长生发布了新的文献求助10
16秒前
汉堡包应助szm采纳,获得10
16秒前
16秒前
17秒前
科研通AI5应助a_hu采纳,获得50
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944