Transformer Based Multi-view Network for Mammographic Image Classification

计算机科学 串联(数学) 人工智能 保险丝(电气) 变压器 模式识别(心理学) 数据挖掘 机器学习 数学 量子力学 组合数学 电气工程 物理 工程类 电压
作者
Zizhao Sun,Huiqin Jiang,Ling Ma,Zhan Yu,Hui Xu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 46-54 被引量:1
标识
DOI:10.1007/978-3-031-16437-8_5
摘要

Most of the existing multi-view mammographic image analysis methods adopt a simple fusion strategy: features concatenation, which is widely used in many features fusion methods. However, concatenation based methods can’t extract cross view information very effectively because different views are likely to be unaligned. Recently, many researchers have attempted to introduce attention mechanism related methods into the field of multi-view mammography analysis. But these attention mechanism based methods still partly rely on convolution, so they can’t take full advantages of attention mechanism. To take full advantage of multi-view information, we propose a novel pure transformer based multi-view network to solve the question of mammographic image classification. In our primary network, we use a transformer based backbone network to extract image features, a “cross view attention block” structure to fuse multi-view information, and a “classification token” to gather all useful information to make the final prediction. Besides, we compare the performance when fusing multi-view information at different stages of the backbone network using a novel designed “(shifted) window based cross view attention block” structure and compare the results when fusing different views’ information. The results on DDSM dataset show that our networks can effectively use multi-view information to make judgments and outperform the concatenation and convolution based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
5秒前
汉堡包应助HalfGumps采纳,获得10
6秒前
6秒前
8秒前
搜集达人应助南山无梅落采纳,获得10
9秒前
弓長玉王令完成签到,获得积分10
9秒前
9秒前
GreyHeron应助LiuHao采纳,获得10
11秒前
12秒前
12秒前
orixero应助王学成采纳,获得10
14秒前
14秒前
地瓜地瓜完成签到 ,获得积分10
14秒前
ncc完成签到,获得积分20
15秒前
大大小小发布了新的文献求助10
15秒前
19秒前
能干的向真应助清梦采纳,获得10
20秒前
somin应助大大小小采纳,获得10
20秒前
orixero应助正直无极采纳,获得10
20秒前
leibo1994完成签到,获得积分10
22秒前
22秒前
YifanWang应助lant0ng采纳,获得10
23秒前
23秒前
23秒前
24秒前
jxcandice发布了新的文献求助10
24秒前
奥利安费发布了新的文献求助10
25秒前
26秒前
29秒前
yuyu发布了新的文献求助10
29秒前
30秒前
可爱的函函应助ksxx采纳,获得10
31秒前
32秒前
34秒前
34秒前
35秒前
贝壳发布了新的文献求助10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141362
捐赠科研通 3241248
什么是DOI,文献DOI怎么找? 1791412
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803417