Rice Ears Detection Method Based on Multi-scale Image Recognition and Attention Mechanism

计算机科学 机制(生物学) 比例(比率) 人工智能 模式识别(心理学) 图像(数学) 计算机视觉 哲学 物理 认识论 量子力学
作者
Qiu Fen,Xiaojun Shen,Cheng Zhou,Wuming He,Lili Yao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/access.2024.3400254
摘要

Accurate identification of rice ears is crucial for assessing rice yield. Present research mainly relies on single-scale image data for rice ears detection and counting. However, these approaches are susceptible to misdetection and omission due to the intricate environmental conditions in fields. The combination of multi-source images can better overcome the limitations of single-scale images. In this study, based on the YOLOv5s target detection algorithm, a method for rice ears detection and counting applicable to multi-source images is proposed by integrating image data collected by cell phones and UAVs during the rice heading and maturity periods. The proposed method introduces Attention-based Intrascale Feature Interaction (AIFI) to reconstruct the backbone feature extraction network, optimizing feature expression interaction and enhancing handling of the model of advanced semantic information. Additionally, Simplify Optimal Transport Assignment (SimOTA) is employed to achieve a more refined label assignment strategy, thereby optimizing detection performance of the model and addressing difficulties in detecting multiple targets in high-density rice ears environments. Finally, Channel-wise Knowledge Distillation for Dense Prediction (CWD) is utilized to enhance the performance of the model in dense prediction tasks by transferring knowledge between different channels. The experimental results demonstrated good performance of the model on datasets comprising rice at the heading and maturity stages, achieving Precision, Recall, and mAP values of 93%, 85.3%, and 90.3%, respectively. The coefficients of determination (R 2 ) for the linear fit between test results and the actual statistical results of the model were 0.91, 0.91, 0.90, and 0.88, respectively. The proposed model performs well in the mixed dataset and can be utilized more effectively for accurate identification and counting of rice ears.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小柠檬发布了新的文献求助10
刚刚
打打应助草上飞采纳,获得10
刚刚
依克完成签到,获得积分10
1秒前
罗备发布了新的文献求助10
2秒前
传奇3应助香蕉不二采纳,获得10
3秒前
3秒前
3秒前
星辰大海应助小柠檬采纳,获得10
5秒前
5秒前
lch23560应助subass采纳,获得20
6秒前
jj发布了新的文献求助10
6秒前
bkagyin应助sulh采纳,获得10
6秒前
活泼的聋五完成签到,获得积分10
6秒前
脑洞疼应助黄俊采纳,获得10
6秒前
Adler应助郑石采纳,获得10
7秒前
7秒前
慕青应助奶冻采纳,获得10
8秒前
9秒前
9秒前
传奇3应助酥酥脆采纳,获得10
9秒前
可爱的函函应助研友_V8Qmr8采纳,获得10
9秒前
9秒前
Lucy__Kuo发布了新的文献求助10
9秒前
12秒前
万能图书馆应助一粟采纳,获得10
13秒前
lllkkk发布了新的文献求助10
14秒前
15秒前
15秒前
zhangxinting0818完成签到,获得积分10
16秒前
LSQ完成签到 ,获得积分10
16秒前
lala发布了新的文献求助10
16秒前
16秒前
19秒前
19秒前
20秒前
李健应助zhangxinting0818采纳,获得10
20秒前
sulh发布了新的文献求助10
20秒前
小张发布了新的文献求助10
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376