BConvLSTM: a deep learning-based technique for severity prediction of a traffic crash

撞车 毒物控制 伤害预防 计算机科学 运输工程 法律工程学 工程类 医疗急救 医学 程序设计语言
作者
Surendra Reddy Vinta,P. Rajarajeswari,M. Vijay Kumar,G. Sai Chaitanya Kumar
出处
期刊:International Journal of Crashworthiness [Taylor & Francis]
卷期号:: 1-11 被引量:1
标识
DOI:10.1080/13588265.2024.2348397
摘要

Predicting the severity of crashes has become a significant issue in research on road accidents. Traffic accident severity prediction is essential for protecting vulnerable road users and preventing traffic accidents. For practitioners to identify significant risk variables and set appropriate countermeasures in place, explainability of the forecast is also essential. Most previous research ignores the severity of property loss caused by traffic accidents and cannot differentiate between different levels of fatalities and property loss severity. Additionally, while an understandable structure of deep neural networks (DNN) is significantly lacking in existing works, understanding traditional systems is quite simple. An inability to use structural data when describing forecasting and the many attempts to incorporate neural networks afflict the absence of hidden layers. We propose a Deep Learning (DL) framework for forecasting traffic crash severity to overcome the accident severity prediction. It has three steps to process. Initially, collected input data are cleaned. Data cleaning is performed in a preprocessing step. We conduct experiments on two datasets, A Countrywide (US) Traffic Accident Dataset and UK Road Accident Dataset. The outcomes of the experiments demonstrate that the proposed technique outperformed other approaches and produced the best accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
朴实思春发布了新的文献求助10
1秒前
2秒前
2秒前
tsehmu1完成签到 ,获得积分10
2秒前
研友_LJeoa8发布了新的文献求助10
3秒前
dzy发布了新的文献求助30
3秒前
3秒前
yaya完成签到,获得积分10
4秒前
快乐爱斯米完成签到,获得积分10
4秒前
5秒前
KKK研完成签到,获得积分10
5秒前
kkk完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
sink发布了新的文献求助10
9秒前
leilei02完成签到,获得积分20
9秒前
9秒前
像风一样发布了新的文献求助10
10秒前
景木游发布了新的文献求助10
10秒前
plant发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
王小敏敏儿完成签到,获得积分10
12秒前
13秒前
Hello应助刘娟采纳,获得20
13秒前
自然的康完成签到,获得积分10
13秒前
wangjius完成签到,获得积分10
13秒前
anlin发布了新的文献求助10
13秒前
祖白易完成签到,获得积分10
14秒前
14秒前
14秒前
羊踯躅完成签到,获得积分10
15秒前
香蕉觅云应助sink采纳,获得10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772132
求助须知:如何正确求助?哪些是违规求助? 3317424
关于积分的说明 10185802
捐赠科研通 3032635
什么是DOI,文献DOI怎么找? 1663634
邀请新用户注册赠送积分活动 795872
科研通“疑难数据库(出版商)”最低求助积分说明 757075