UAV Target Detection for IoT via Enhancing ERP Component by Brain–Computer Interface System

计算机科学 接口(物质) 人工智能 目标检测 组分(热力学) 恒虚警率 实时计算 分割 计算机视觉 模式识别(心理学) 热力学 物理 最大气泡压力法 气泡 并行计算
作者
Yufeng Zhang,Hongxin Zhang,Xiaorong Gao,Shangen Zhang,Chen Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (19): 17243-17253 被引量:1
标识
DOI:10.1109/jiot.2023.3273163
摘要

The increasing popularity of Internet of Things (IoT) devices provides a huge data source for intelligent identification. Images captured by the unmanned aerial vehicle (UAV) are often exploited in target detection missions for search, rescue and fire prevention. However, without sufficient training samples, the machine learning method is usually difficult to meet application requirements. To solve the problem, a brain–computer interface (BCI) real-time system is applied to UAV target detection. In this study, a novel rapid serial visual presentation (RSVP) paradigm was formulated to present images, enhancing the ability for wide-area target detection. Since there is spatial correlation in captured images, joint decision for identical target can improve the recognition efficiency. To suppress interfering components and improve event-related potential (ERP) detection efficiency, an enhancing ERP component (EEC) algorithm is proposed. Both decision method and EEC algorithm are based on strictly statistical theory. RSVP task was performed by 12 subjects. The interference components and noise correlation were significantly reduced by the EEC algorithm. The target detection rate online was 86.6% while the false alarm rate was less than 5%. Besides, the joint decision strategy raised the area under curve (AUC) value from 0.876 to 0.963. The proposed BCI real-time system realizes the complementarity of human intelligence and IoT, ushering UAV target detection into the era of hybrid intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Riki完成签到,获得积分10
1秒前
虚幻白玉发布了新的文献求助10
1秒前
德行天下完成签到,获得积分10
1秒前
Jenny应助lan采纳,获得10
2秒前
fztnh完成签到,获得积分10
2秒前
上官若男应助lyz666采纳,获得10
2秒前
顾念完成签到 ,获得积分10
2秒前
277发布了新的文献求助10
3秒前
小二郎应助GCD采纳,获得10
4秒前
hhhhhh完成签到 ,获得积分10
4秒前
甜味拾荒者完成签到,获得积分10
6秒前
小二郎应助BONBON采纳,获得10
6秒前
7秒前
charllie完成签到 ,获得积分10
7秒前
空禅yew完成签到,获得积分10
8秒前
坚强亦丝应助跳跃采纳,获得10
10秒前
英俊的铭应助cc采纳,获得10
10秒前
huangsan完成签到,获得积分10
10秒前
匹诺曹完成签到,获得积分10
10秒前
11秒前
华仔应助进取拼搏采纳,获得10
11秒前
12秒前
dingdong发布了新的文献求助10
12秒前
you完成签到 ,获得积分10
13秒前
qwf完成签到 ,获得积分10
13秒前
14秒前
万能图书馆应助一一采纳,获得10
14秒前
执着跳跳糖完成签到 ,获得积分10
15秒前
阳yang完成签到,获得积分10
15秒前
牛头人完成签到,获得积分10
15秒前
16秒前
Rrr发布了新的文献求助10
16秒前
17秒前
17秒前
serenity完成签到 ,获得积分10
17秒前
Benliu完成签到,获得积分10
17秒前
csq发布了新的文献求助10
18秒前
19秒前
Hello应助外向的醉易采纳,获得10
19秒前
DWWWDAADAD完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808