UAV Target Detection for IoT via Enhancing ERP Component by Brain–Computer Interface System

计算机科学 接口(物质) 人工智能 目标检测 组分(热力学) 恒虚警率 实时计算 分割 计算机视觉 模式识别(心理学) 热力学 物理 最大气泡压力法 气泡 并行计算
作者
Yufeng Zhang,Hongxin Zhang,Xiaorong Gao,Shangen Zhang,Chen Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (19): 17243-17253 被引量:1
标识
DOI:10.1109/jiot.2023.3273163
摘要

The increasing popularity of Internet of Things (IoT) devices provides a huge data source for intelligent identification. Images captured by the unmanned aerial vehicle (UAV) are often exploited in target detection missions for search, rescue and fire prevention. However, without sufficient training samples, the machine learning method is usually difficult to meet application requirements. To solve the problem, a brain–computer interface (BCI) real-time system is applied to UAV target detection. In this study, a novel rapid serial visual presentation (RSVP) paradigm was formulated to present images, enhancing the ability for wide-area target detection. Since there is spatial correlation in captured images, joint decision for identical target can improve the recognition efficiency. To suppress interfering components and improve event-related potential (ERP) detection efficiency, an enhancing ERP component (EEC) algorithm is proposed. Both decision method and EEC algorithm are based on strictly statistical theory. RSVP task was performed by 12 subjects. The interference components and noise correlation were significantly reduced by the EEC algorithm. The target detection rate online was 86.6% while the false alarm rate was less than 5%. Besides, the joint decision strategy raised the area under curve (AUC) value from 0.876 to 0.963. The proposed BCI real-time system realizes the complementarity of human intelligence and IoT, ushering UAV target detection into the era of hybrid intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助kofbird采纳,获得50
1秒前
zz完成签到,获得积分10
1秒前
星辰大海应助ybwei2008_163采纳,获得10
1秒前
3秒前
3秒前
QJYKKK完成签到,获得积分10
3秒前
composite66完成签到,获得积分10
3秒前
ccchao发布了新的文献求助30
4秒前
充电宝应助十三采纳,获得10
4秒前
大个应助橙橙橙采纳,获得10
4秒前
Dandanhuang完成签到,获得积分10
4秒前
FashionBoy应助孟孟采纳,获得30
6秒前
畅快的刚完成签到,获得积分10
8秒前
8秒前
xxxx完成签到,获得积分10
8秒前
vain发布了新的文献求助10
8秒前
李健应助芒果小鹌鹑采纳,获得10
8秒前
cc完成签到,获得积分10
9秒前
这个名字是不是独一无二完成签到,获得积分10
9秒前
颗粒完成签到,获得积分10
10秒前
10秒前
javeeen完成签到,获得积分10
11秒前
应俊完成签到 ,获得积分10
11秒前
1234完成签到 ,获得积分10
12秒前
轻松元柏完成签到,获得积分10
13秒前
WN发布了新的文献求助10
13秒前
13秒前
我必定发nature给我必定发nature的求助进行了留言
14秒前
组织因子发布了新的文献求助10
14秒前
15秒前
Sadgenius完成签到,获得积分10
17秒前
领导范儿应助妹妹采纳,获得10
18秒前
炒栗子发布了新的文献求助10
18秒前
llu关注了科研通微信公众号
19秒前
ly完成签到,获得积分10
20秒前
逍遥完成签到 ,获得积分20
21秒前
22秒前
轻松剑完成签到 ,获得积分10
22秒前
祝你勇敢完成签到 ,获得积分10
22秒前
Eternitymaria完成签到,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048