Underwater bolted flange looseness detection using percussion-induced sound and Feature-reduced Multi-ROCKET model

水下 轮缘 计算机科学 音频信号 工程类 人工智能 声学 语音识别 模式识别(心理学) 结构工程 数字信号处理 电子工程 海洋学 物理 地质学
作者
Jian Chen,Zheng Chen,Weihang Zhu,Gangbing Song
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (1): 495-511 被引量:7
标识
DOI:10.1177/14759217231153991
摘要

Recently, in the field of structural health monitoring, the detection of bolted connection looseness through percussion-based method and machine learning technology has received much attention due to the advantages of removing the requirement of sensor installation and potential for automation. However, there are few such research which are performed in the underwater environment. The paper proposes a new method, Feature-reduced Multiple Random Convolution Kernel Transform (FM-ROCKET), to identify the looseness level of the underwater bolted connections based on the percussion-induced sound (audio signal). By integrating deep learning (DL) and shallow learning, the FM-ROCKET model uses the 1D convolutional layer (a DL method) to extract features from the percussion-induced audio signal and adopts the rigid classifier (linear classifier, a shallow learning method) to classify the features. Five different preload levels of the bolted flange are considered. A hammer is utilized to tap the flange surface and the continuous percussion-induced audio signal is collected by a smartphone in an underwater environment. After the audio signal segmentation, single-hit audio signals are fed into the FM-ROCKET model. To verify the effectiveness of the proposed method, three case studies are conducted on two flanges. In case study I, the proposed method slightly outperforms other DL-based methods under different training/test splitting ratios. In case studies II and III, the proposed method is far more effective than other DL-based methods on independent and different test sets. The results demonstrate the superiority of the FM-ROCKET model in the underwater detection of bolted flange looseness. To the best of our knowledge, this article is the first attempt to address the detection of bolted flange looseness in the underwater environment by combining percussion-based method, DL, and shallow learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助科研通管家采纳,获得10
2秒前
嗯哼应助科研通管家采纳,获得20
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
大有阳光应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
Singularity应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得30
3秒前
iNk应助科研通管家采纳,获得10
3秒前
BOSS徐应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
梓泽丘墟应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
ting完成签到,获得积分10
4秒前
justsoso完成签到,获得积分10
4秒前
丝丝完成签到,获得积分20
5秒前
KEyanba完成签到,获得积分10
5秒前
愉快的宛儿完成签到,获得积分20
5秒前
6秒前
Duolalala完成签到 ,获得积分10
6秒前
火龙果完成签到,获得积分10
7秒前
有足量NaCl完成签到 ,获得积分10
8秒前
qhy完成签到,获得积分10
10秒前
10秒前
10秒前
淡然善斓完成签到,获得积分10
11秒前
我是老大应助曾无忧采纳,获得10
12秒前
13秒前
星海完成签到,获得积分10
13秒前
安静的瑾瑜完成签到 ,获得积分10
13秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162567
求助须知:如何正确求助?哪些是违规求助? 2813460
关于积分的说明 7900578
捐赠科研通 2473036
什么是DOI,文献DOI怎么找? 1316641
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175