Advances in Humidity Nanosensors and Their Application: Review

纳米传感器 纳米技术 材料科学 纳米材料 硫化镉 湿度 热力学 物理 冶金
作者
Chin-An Ku,C.K. Chung
出处
期刊:Sensors [MDPI AG]
卷期号:23 (4): 2328-2328 被引量:38
标识
DOI:10.3390/s23042328
摘要

As the technology revolution and industrialization have flourished in the last few decades, the development of humidity nanosensors has become more important for the detection and control of humidity in the industry production line, food preservation, chemistry, agriculture and environmental monitoring. The new nanostructured materials and fabrication in nanosensors are linked to better sensor performance, especially for superior humidity sensing, following the intensive research into the design and synthesis of nanomaterials in the last few years. Various nanomaterials, such as ceramics, polymers, semiconductor and sulfide, carbon-based, triboelectrical nanogenerator (TENG), and MXene, have been studied for their potential ability to sense humidity with structures of nanowires, nanotubes, nanopores, and monolayers. These nanosensors have been synthesized via a wide range of processes, including solution synthesis, anodization, physical vapor deposition (PVD), or chemical vapor deposition (CVD). The sensing mechanism, process improvement and nanostructure modulation of different types of materials are mostly inexhaustible, but they are all inseparable from the goals of the effective response, high sensitivity and low response–recovery time of humidity sensors. In this review, we focus on the sensing mechanism of direct and indirect sensing, various fabrication methods, nanomaterial geometry and recent advances in humidity nanosensors. Various types of capacitive, resistive and optical humidity nanosensors are introduced, alongside illustration of the properties and nanostructures of various materials. The similarities and differences of the humidity-sensitive mechanisms of different types of materials are summarized. Applications such as IoT, and the environmental and human-body monitoring of nanosensors are the development trends for futures advancements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小闫完成签到,获得积分10
刚刚
卡卡龍特完成签到,获得积分10
刚刚
疯狂的科研小羊完成签到,获得积分10
1秒前
1秒前
小蘑菇应助哒哒哒采纳,获得10
1秒前
别喊我起床完成签到,获得积分10
1秒前
小茵茵完成签到,获得积分10
1秒前
火蓝完成签到,获得积分10
1秒前
1秒前
2秒前
hyd1640完成签到,获得积分10
2秒前
墨丿筠发布了新的文献求助10
2秒前
3秒前
meme完成签到,获得积分10
3秒前
桐桐应助开朗可行采纳,获得10
3秒前
科研通AI5应助ssss采纳,获得10
3秒前
3秒前
forg发布了新的文献求助10
4秒前
SQL完成签到 ,获得积分10
4秒前
小闫发布了新的文献求助10
5秒前
清秀的砖头完成签到,获得积分10
5秒前
Hum0ro98完成签到,获得积分10
5秒前
刘西西完成签到,获得积分10
5秒前
美丽的问安完成签到 ,获得积分10
5秒前
二十八完成签到 ,获得积分10
5秒前
shanyang完成签到,获得积分10
6秒前
学谦完成签到,获得积分10
6秒前
6秒前
略略略完成签到 ,获得积分10
6秒前
nlm发布了新的文献求助10
6秒前
lixin发布了新的文献求助10
7秒前
QQQ发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
LXXue完成签到,获得积分20
8秒前
Triumph完成签到,获得积分10
8秒前
forg完成签到,获得积分10
9秒前
你好包包完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912