Unsupervised structure subdomain adaptation based the Contrastive Cluster Center for bearing fault diagnosis

计算机科学 桥接(联网) 稳健性(进化) 域适应 人工智能 算法 模式识别(心理学) 滤波器(信号处理) 判别式 数据挖掘 分类器(UML) 计算机视觉 计算机网络 化学 生物化学 基因
作者
Pengfei Chen,Rongzhen Zhao,Tianjing He,Kongyuan Wei,Jianhui Yuan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:122: 106141-106141 被引量:13
标识
DOI:10.1016/j.engappai.2023.106141
摘要

Recently, Unsupervised Domain Adaptation (UDA) as one of the transfer learning can handle the different data distributions and has been utilized in mechanical fault diagnosis under various working conditions successfully. However, most of them have only regarded two distributions as a global domain adaptation and ignored the subdomain adaptation issue, i.e., there is a subdomain distribution discrepancy between the two same categories. Additionally, most marking pseudo label approaches do not consider the influences of noise in pseudo labels. To circumvent the aforementioned challenges, firstly, a dropout trick has been developed and explored to filter the noisy pseudo label for obtaining the higher confident pseudo labels. Furthermore, a novel subdomain alignment method named Contrastive Cluster Center (CCC) has been proposed for pushing away the different domain cluster centers and bringing closer the same domain cluster centers for bridging the subdomain gap. Finally, the findings of the comparative experiments have demonstrated that the proposed method could boost the average accuracy of 2.2% and 3% on PU and LZUT bearing datasets than the state-of-art methods, respectively. Moreover, convergence analysis also suggests that the proposed method has superior robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SciGPT应助yy采纳,获得10
1秒前
sujiali发布了新的文献求助10
2秒前
3秒前
FLASH发布了新的文献求助10
4秒前
5秒前
6秒前
顾矜应助李白白白采纳,获得10
6秒前
lrid完成签到,获得积分10
8秒前
9秒前
ao发布了新的文献求助10
9秒前
浮游应助草木采纳,获得10
10秒前
陈杰发布了新的文献求助10
11秒前
Criminology34应助宋佳荟采纳,获得10
12秒前
CipherSage应助的卢小马采纳,获得10
12秒前
dddnnn发布了新的文献求助10
12秒前
活泼的石头完成签到,获得积分10
13秒前
可爱的函函应助发文必过采纳,获得10
14秒前
14秒前
魔幻的心情完成签到,获得积分10
15秒前
李明完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
na发布了新的文献求助10
19秒前
Baili发布了新的文献求助10
19秒前
周文丽发布了新的文献求助10
20秒前
21秒前
21秒前
123完成签到,获得积分20
22秒前
yzq完成签到 ,获得积分10
22秒前
dddnnn完成签到,获得积分10
22秒前
24秒前
25秒前
25秒前
鹤轩完成签到,获得积分20
26秒前
小马甲应助一汪无前采纳,获得10
26秒前
26秒前
三腔二囊管完成签到,获得积分10
26秒前
28秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905