Unsupervised structure subdomain adaptation based the Contrastive Cluster Center for bearing fault diagnosis

计算机科学 桥接(联网) 稳健性(进化) 域适应 人工智能 算法 模式识别(心理学) 滤波器(信号处理) 判别式 数据挖掘 分类器(UML) 计算机视觉 计算机网络 化学 生物化学 基因
作者
Pengfei Chen,Rongzhen Zhao,Tianjing He,Kongyuan Wei,Jianhui Yuan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:122: 106141-106141 被引量:13
标识
DOI:10.1016/j.engappai.2023.106141
摘要

Recently, Unsupervised Domain Adaptation (UDA) as one of the transfer learning can handle the different data distributions and has been utilized in mechanical fault diagnosis under various working conditions successfully. However, most of them have only regarded two distributions as a global domain adaptation and ignored the subdomain adaptation issue, i.e., there is a subdomain distribution discrepancy between the two same categories. Additionally, most marking pseudo label approaches do not consider the influences of noise in pseudo labels. To circumvent the aforementioned challenges, firstly, a dropout trick has been developed and explored to filter the noisy pseudo label for obtaining the higher confident pseudo labels. Furthermore, a novel subdomain alignment method named Contrastive Cluster Center (CCC) has been proposed for pushing away the different domain cluster centers and bringing closer the same domain cluster centers for bridging the subdomain gap. Finally, the findings of the comparative experiments have demonstrated that the proposed method could boost the average accuracy of 2.2% and 3% on PU and LZUT bearing datasets than the state-of-art methods, respectively. Moreover, convergence analysis also suggests that the proposed method has superior robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶绿体不用吃饭完成签到,获得积分10
1秒前
充电宝应助罗燕平采纳,获得10
1秒前
烦烦发布了新的文献求助10
1秒前
1秒前
学术搭子发布了新的文献求助10
2秒前
守护发布了新的文献求助10
3秒前
4秒前
科研通AI6应助pbj采纳,获得10
4秒前
Hello应助pbj采纳,获得10
4秒前
小马甲应助明月采纳,获得10
4秒前
5秒前
尼古拉斯小hu完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
CipherSage应助ChenYX采纳,获得10
7秒前
8秒前
沅湘完成签到,获得积分20
8秒前
9秒前
小二郎应助认真乐安采纳,获得30
10秒前
lhp发布了新的文献求助10
11秒前
12秒前
两袖清风完成签到,获得积分10
12秒前
12秒前
yyj完成签到,获得积分10
12秒前
风语过发布了新的文献求助10
13秒前
13秒前
科目三应助林一采纳,获得10
13秒前
13秒前
sujinyu发布了新的文献求助10
13秒前
若晴完成签到 ,获得积分10
14秒前
14秒前
田様应助摸鱼咯采纳,获得10
15秒前
zhendezy发布了新的文献求助10
16秒前
17秒前
传奇3应助ATP采纳,获得10
17秒前
7890733发布了新的文献求助10
18秒前
18秒前
19秒前
李爱国应助BLCER采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352