亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi‐feature, Chinese–Western medicine‐integrated prediction model for diabetic peripheral neuropathy based on machine learning and SHAP

医学 预测建模 中医药 机器学习 内科学 人工智能 周围神经病变 糖尿病 计算机科学 替代医学 病理 内分泌学
作者
Aijuan Jiang,Jiajie Li,Lujie Wang,Wenshu Zha,Yixuan Lin,Jindong Zhao,Zhaohui Fang,Guo-Ming Shen
出处
期刊:Diabetes-metabolism Research and Reviews [Wiley]
卷期号:40 (4)
标识
DOI:10.1002/dmrr.3801
摘要

Abstract Background Clinical studies have shown that diabetic peripheral neuropathy (DPN) has been on the rise, with most patients presenting with severe and progressive symptoms. Currently, most of the available prediction models for DPN are derived from general clinical information and laboratory indicators. Several Traditional Chinese medicine (TCM) indicators have been utilised to construct prediction models. In this study, we established a novel machine learning‐based multi‐featured Chinese–Western medicine‐integrated prediction model for DPN using clinical features of TCM. Materials and Methods The clinical data of 1581 patients with Type 2 diabetes mellitus (T2DM) treated at the Department of Endocrinology of the First Affiliated Hospital of Anhui University of Chinese Medicine were collected. The data (including general information, laboratory parameters and TCM features) of 1142 patients with T2DM were selected after data cleaning. After baseline description analysis of the variables, the data were divided into training and validation sets. Four prediction models were established and their performance was evaluated using validation sets. Meanwhile, the accuracy, precision, recall, F1 score and area under the curve (AUC) of ROC were calculated using ten‐fold cross‐validation to further assess the performance of the models. An explanatory analysis of the results of the DPN prediction model was carried out using the SHAP framework based on machine learning‐based prediction models. Results Of the 1142 patients with T2DM, 681 had a comorbidity of DPN, while 461 did not. There was a significant difference between the two groups in terms of age, cause of disease, systolic pressure, HbA1c, ALT, RBC, Cr, BUN, red blood cells in the urine, glucose in the urine, and protein in the urine ( p < 0.05). T2DM patients with a comorbidity of DPN exhibited diverse TCM symptoms, including limb numbness, limb pain, hypodynamia, thirst with desire for drinks, dry mouth and throat, blurred vision, gloomy complexion, and unsmooth pulse, with statistically significant differences ( p < 0.05). Our results showed that the proposed multi‐featured Chinese–Western medicine‐integrated prediction model was superior to conventional models without characteristic TCM indicators. The model showed the best performance (accuracy = 0.8109, precision = 0.8029, recall = 0.9060, F1 score = 0.8511, and AUC = 0.9002). SHAP analysis revealed that the dominant risk factors that caused DPN were TCM symptoms (limb numbness, thirst with desire for drinks, blurred vision), age, cause of disease, and glycosylated haemoglobin. These risk factors were exerted positive effects on the DPN prediction models. Conclusions A multi‐feature, Chinese–Western medicine‐integrated prediction model for DPN was established and validated. The model improves early‐stage identification of high‐risk groups for DPN in the diagnosis and treatment of T2DM, while also providing informative support for the intelligent management of chronic conditions such as diabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
华仔应助任性机器猫采纳,获得10
19秒前
Roger完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Suyi完成签到,获得积分20
1分钟前
夏天无完成签到,获得积分10
1分钟前
1分钟前
48662发布了新的文献求助10
1分钟前
1分钟前
XiYao驳回了852应助
1分钟前
cbrown发布了新的文献求助10
2分钟前
mengyuhuan完成签到 ,获得积分0
2分钟前
marshyyy应助Suyi采纳,获得10
2分钟前
cbrown完成签到 ,获得积分10
2分钟前
mmyhn发布了新的文献求助10
2分钟前
欣喜的代容完成签到 ,获得积分10
2分钟前
ZK完成签到,获得积分10
2分钟前
只谈风月完成签到,获得积分10
2分钟前
Billy应助别急我先送采纳,获得30
2分钟前
3分钟前
笨笨十三完成签到 ,获得积分10
3分钟前
粗犷的小笼包完成签到,获得积分10
3分钟前
秋蚓完成签到 ,获得积分10
3分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
4分钟前
Dandraine完成签到,获得积分10
4分钟前
4分钟前
毕葛发布了新的文献求助10
4分钟前
4分钟前
4分钟前
shusz完成签到,获得积分10
4分钟前
4分钟前
甄阁发布了新的文献求助10
5分钟前
毕葛发布了新的文献求助10
5分钟前
科研通AI2S应助简单的奇迹采纳,获得10
5分钟前
6188完成签到 ,获得积分10
5分钟前
Dandraine发布了新的文献求助20
5分钟前
华仔应助阿明采纳,获得30
5分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126069
求助须知:如何正确求助?哪些是违规求助? 2776271
关于积分的说明 7729714
捐赠科研通 2431733
什么是DOI,文献DOI怎么找? 1292230
科研通“疑难数据库(出版商)”最低求助积分说明 622601
版权声明 600392