Nanoconfined Ti3C2@in-situ-grown TiO2 and ruthenium triphenylphosphine (Ru-II) coupled g-C3N4 to construct RuP-Ti3C2@TiO2/EC3N4 dual function nanocomposite for enhancing photocatalytic green hydrogen production

光催化 材料科学 异质结 纳米复合材料 光化学 化学工程 纳米技术 光电子学 化学 催化作用 有机化学 工程类
作者
Muhammad Tahir
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:476: 146680-146680 被引量:8
标识
DOI:10.1016/j.cej.2023.146680
摘要

Nanoconfined 2D Ti3C2 MXene@ in-situ grown TiO2 and ruthenium (II) complex (triphenylphosphine, RuP) were synchronously attached with exfoliated g-C3N4 to fabricate a RuP-Ti3C2@TiO2/EC3N4 dual function nanotexture for photocatalytic solar hydrogen production. The Ti3C2@TiO2 was obtained through HF etching, whereas 48 h of etching time was optimal, enabling the highest H2 production through TiO2 photoexcitation. The nanoconfined Ti3C2@TiO2 coupled with EC3N4 boosted 2.34 folds more H2 production due to TiO2/EC3N4 heterojunction formation with Ti3C2 as a cocatalyst to trap and transport charge carriers. Coupling ruthenium complex (RuP) was beneficial to inject excited electrons to enhance EC3N4 photoactivation under visible light, whereas Ti3C2 cocatalyst accepted the photogenerated electrons from EC3N4 through in-situ grown TiO2. The optimized RuP-Ti3C2@TiO2/EC3N4 exhibited a H2 production rate of 1772 µmol g−1 h−1, which was 2.91, 5.16 and 18.02 folds higher than using RuP/EC3N4, Ti3C2/EC3N4 and EC3N4 samples, respectively. The synergistic effect of RuP with Ti3C2@TiO2 promoted H2 evolution without any deactivation of surface stability due to providing excited electrons and preventing their recombination over the exfoliated nanotexture of g-C3N4. Using this new approach to constructing dual-function heterojunctions, it is attractive to excite semiconductors and can increase the lifetime of photoinduced charge carriers. This work provides a facile strategy and new design approach to develop highly efficient and low-cost photocatalysts for future solar energy-assisted sustainable energy conversion systems for different applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮的幻竹应助GuSiwen采纳,获得10
2秒前
qiuwenxian0831完成签到,获得积分10
2秒前
2秒前
努力站桩的奶酪完成签到,获得积分20
3秒前
jupiter完成签到,获得积分10
3秒前
Jahseh发布了新的文献求助20
4秒前
mm发布了新的文献求助10
4秒前
4秒前
李清湛完成签到,获得积分10
4秒前
4秒前
任性的老三完成签到,获得积分20
4秒前
研友_LJQ4o8完成签到,获得积分10
5秒前
Y.完成签到,获得积分10
5秒前
L_1完成签到,获得积分10
8秒前
8秒前
451721427完成签到,获得积分10
8秒前
8秒前
自觉语琴完成签到,获得积分10
9秒前
Ava应助mm采纳,获得10
11秒前
11秒前
凡yeah发布了新的文献求助10
11秒前
mm发布了新的文献求助10
12秒前
Orange应助451721427采纳,获得50
13秒前
今后应助GuSiwen采纳,获得10
13秒前
GeneYang完成签到,获得积分10
13秒前
13秒前
英俊的铭应助机智翼采纳,获得10
14秒前
Feiruxu完成签到,获得积分10
16秒前
16秒前
glimmen完成签到,获得积分10
16秒前
16秒前
思源应助sheep采纳,获得10
17秒前
17秒前
飞飞完成签到,获得积分10
18秒前
18秒前
万柳书院小书童完成签到,获得积分10
19秒前
完美天蓝完成签到 ,获得积分10
19秒前
19秒前
脑洞疼应助Happy422采纳,获得10
20秒前
七面东风完成签到 ,获得积分10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160242
求助须知:如何正确求助?哪些是违规求助? 2811282
关于积分的说明 7891712
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315472
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038