相互信息
Kullback-Leibler散度
熵(时间箭头)
量子相对熵
数学
信息论
相干信息
量子互信息
条件熵
广义相对熵
零(语言学)
联合熵
联合量子熵
条件互信息
量子信息
量子
统计物理学
量子信道
量子力学
量子不和谐
最大熵原理
物理
统计
量子纠缠
语言学
哲学
作者
Yuan Zhai,Bo Yang,Zhengjun Xi
出处
期刊:Physical review
日期:2023-07-10
卷期号:108 (1)
标识
DOI:10.1103/physreva.108.012413
摘要
Quantum R\'enyi relative entropies play a significant part in characterizing operational tasks in quantum information theory. In this paper, we first give some fundamental properties of the zero-relative entropy, and we find that the geometric R\'enyi relative entropy reduces to the zero-relative entropy in the limit case. Then, we define a new mutual information via the zero-relative entropy, and it is the so-called zero-mutual information. In particular, the zero-mutual information is a lower bound of the Petz-R\'enyi and geometric generalized mutual information. We establish the chain rules for the unsmoothed and smoothed versions of the zero-mutual information. As an application, we discuss generalized mutual information with the Petz-R\'enyi, sandwiched R\'enyi, and geometric R\'enyi types, our result gives a uniform chain rule inequality for quantum generalized mutual information.
科研通智能强力驱动
Strongly Powered by AbleSci AI