作者
Junyi He,Mingkai Huang,Nana Li,Lingfeng Zha,Jun Yuan
摘要
Objective: To elucidate the bidirectional correlation of sarcopenia with coronary heart disease (CHD), as well as to investigate the mediating role of cardiometabolic factors and inflammatory biomarkers, a bidirectional two-sample, two-step Mendelian randomization (MR) study was conducted. Methods: Summary statistics were obtained from genome-wide association studies (GWAS). In our bidirectional two-sample MR, genetic variants associated with sarcopenia-related traits and CHD were instrumented for the estimation of bidirectional correlations. Besides, genetic variants associated with thirteen cardiometabolic factors and six inflammatory biomarkers were selected for further mediation analyses. To confirm the consistency of the results, several sensitivity analyses were carried out. Results: Genetically predicted higher appendicular lean mass (OR = 0.835, 95% CI: 0.790–0.882), left hand grip strength (OR = 0.703, 95% CI: 0.569–0.869), right hand grip strength (OR = 0.685, 95% CI: 0.555–0.844), and walking pace (OR = 0.321, 95% CI: 0.191–0.539) reduced CHD risk, while genetic predisposition to CHD did not affect any of the sarcopenia-related traits. Seven mediators were identified for the effects of appendicular lean mass on CHD, including waist-to-hip ratio, hip circumference, systolic blood pressure, low-density lipoprotein cholesterol, total cholesterol, triglycerides, and fasting insulin. The mediation proportion ranged from 10.23% for triglycerides to 35.08% for hip circumference. Hip circumference was found to mediate the relationships between both left (mediation proportion: 24.61%) and right-hand grip strength (24.14%) and CHD, and the link between walking pace and CHD was partially mediated by waist-to-hip ratio (31.15%) and body mass index (26.66%). Conclusion: Our results showed that higher appendicular lean mass, hand grip strength, and walking pace reduced CHD risk, but the causal relationship was not bidirectional. Several mediators were found to mediate the causal pathways between sarcopenia-related traits and CHD, and intervention of these factors may be helpful in terms of CHD prevention in sarcopenia patients.