Low‐Power and Multimodal Organic Photoelectric Synaptic Transistors Modulated by Photoisomerization for UV Damage Perception and Artificial Visual Recognition

光异构化 材料科学 光电效应 感知 光电子学 光化学 神经科学 异构化 有机化学 化学 生物 催化作用
作者
Jingpeng Wu,Xin Wang,Xian Tang,Zechen Liang,Bin Hu,Yixin Ran,Laju Bu,Guanghao Lu
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202420073
摘要

Abstract Low‐power and efficiently parallel neuromorphic computing is expected to break the bottleneck of the von Neumann architecture. Due to the direct responses to optical signals, photonic synaptic devices can work as core components of artificial visual systems, accelerating the development of neural computing. Furthermore, the community is looking for effective coupling of photonic and electronic synaptic behaviors within an individual organic device to achieve further functional integration. Photoisomeric molecules with photo‐regulatable properties are expected to facilitate this process. Herein, organic photoelectric synaptic transistors (OPSTs) are constructed by introducing poly(2‐(3′,3′‐dimethyl‐6‐nitrospiro[chromene‐2,2′‐indolin]‐1′‐yl) ethyl methacrylate) (PSPMA) with photoisomeric groups, which effectively improves the photo‐synaptic response. Due to the polarization induction and light‐assisted charge trapping of PSPMA, the OPSTs simulate typical photo‐synaptic behaviors and achieve significant conductance modulation at low voltage with the assistance of UV light. The power consumption is as low as 84 aJ per event. Moreover, the OPSTs mimic UV nociceptors, recognize handwritten digits with 93.33% accuracy, and decode encrypted optical information, demonstrating the potential of applications in UV damage perception and artificial visual recognition. These findings will expand the application of photoisomeric molecules in photonic synaptic devices, and open up new possibilities for hardware architectures with coupling photonic and electronic synapses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
相信相信的力量完成签到,获得积分10
1秒前
夏天发布了新的文献求助10
1秒前
一只鱼er发布了新的文献求助10
1秒前
111111发布了新的文献求助10
3秒前
桐桐应助duxh123采纳,获得10
4秒前
4秒前
小熊完成签到,获得积分10
4秒前
jackycas发布了新的文献求助10
5秒前
6秒前
搞怪尔曼完成签到,获得积分10
6秒前
SYLH应助swfitking采纳,获得10
6秒前
缓慢冰淇淋完成签到,获得积分10
6秒前
6秒前
FashionBoy应助liu采纳,获得10
7秒前
热心市民小红花应助山鸟采纳,获得10
7秒前
7秒前
852应助闵斯采纳,获得10
10秒前
11秒前
爆米花应助夏天采纳,获得10
11秒前
12秒前
SYLH应助陶醉千愁采纳,获得10
13秒前
14秒前
76542cu完成签到,获得积分10
15秒前
爆炸boom完成签到 ,获得积分10
16秒前
干脆小饼干完成签到,获得积分10
16秒前
斯文败类应助无限的汝燕采纳,获得30
16秒前
嗯哼完成签到 ,获得积分10
17秒前
胡杨完成签到,获得积分10
17秒前
17秒前
18秒前
duxh123发布了新的文献求助10
19秒前
19秒前
20秒前
SciGPT应助夏天猫采纳,获得10
21秒前
酷波er应助单薄雁玉采纳,获得10
21秒前
lss发布了新的文献求助10
22秒前
Jack爱控球发布了新的文献求助10
22秒前
22秒前
YY完成签到,获得积分10
23秒前
香蕉觅云应助王一g采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469748
求助须知:如何正确求助?哪些是违规求助? 3062929
关于积分的说明 9080652
捐赠科研通 2753160
什么是DOI,文献DOI怎么找? 1510771
邀请新用户注册赠送积分活动 698056
科研通“疑难数据库(出版商)”最低求助积分说明 698018